Antibacterial Activity of Ethanol Extract, n-Hexane and Ethyl Acetate Fraction of Mundar (*Garcinia forbesii*) Pericarp

Hayatun Izma; Muhammad Ikhwan Rizki; Khoerul Anwar; Dyah Anggraeni; Satrio Wibowo Rahmatulllah; Aditya Maulana Perdana Putra; Dita Ayulia Dwi Sandi

Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Lambung Mangkurat, Indonesia

ABSTRACT

Garcinia forbesii is a typical fruit of South Kalimantan, used by the community as medicine and cosmetics. The aim of the study was to determine the antibacterial activity of ethanolic extract and fraction of *Garcinia forbesii* pericarp against *Staphylococcus aureus* and *Propionibacterium acnes*. Antibacterial activity based on the diameter of inhibition zone, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The results showed that the largest inhibition zone diameter against *Staphylococcus aureus* and *Propionibacterium acnes* was indicated by ethyl acetate fraction of 5.08±1.020 mm and 14.33±3.326 mm. The MIC value of ethanol extract against *Staphylococcus aureus* and *Propionibacterium acnes* bacteria was >1.5%, n-hexane and ethyl acetate fraction had the same results, namely against *Staphylococcus aureus*>1.5% and *Propionibacterium acnes* at 1.5%. The MBC value was only obtained for fraction samples of *Propionibacterium acnes* at concentration of 1.5%. It was concluded that ethyl acetate had strong antibacterial activity against *Propionibacterium acnes* based on the value of inhibition zone diameter, MIC, and MBC.

Keywords: *Garcinia forbesii*, *Propionibacterium acnes*, *Staphylococcus aureus*

INTRODUCTION

Bacteria are a group of single-celled living organisms and are microscopic (Prasetyo and Sasongko, 2014). *Staphylococcus aureus* and *Propionibacterium acnes* are gram-positive bacteria (Rosyad, 2009; Karlina et al., 2013; Prasetyo and Sasongko, 2014). *Staphylococcus aureus* causes pneumonia, lung abscess, meningitis, laryngeal infections, and skin lesions (Rostinawati, 2010; Amalia et al., 2014). *Propionibacterium acnes* causes pimples and plays a role in the inflammatory chemotactic process in the ducts of the sebaceous glands (Sambou et al., 2017).

Antibacterials are compounds that can inhibit the growth of certain bacteria (Rostinawati, 2010), while antibiotics are used to treat bacterial infections (Amalia et al., 2014). Antibiotic resistance cause problems that can counteract antibiotic treatment (Noviardini, 2010). The World Health Organization states that more than 200,000 newborns die yearly from infections that do not respond to the given drugs; most of these deaths occur in developing countries (Organization, 2021). Control of antibiotics resistance can be done by using plants that have antibacterial properties. One of the plants with the potential as an antibacterial agent is the pericarp of mundar (*Garcinia forbesii*).

The mundar (*Garcinia forbesii*) plant is a typical plant of South Kalimantan, traditionally used by the community as medicine and cosmetics (Alen et al., 2008; Noor and Ningsih, 2017). The Garcinia genus contains secondary metabolite compounds such as xanthones, alkaloids, flavonoids, tannins, and saponins (Rithiwigrom et al., 2013; Aziz, 2015). Alpha-mangostin is a compound belonging to the xanthone group found in the rind of the mangosteen fruit (*Garcinia mangostana* L.), and has been shown to have antibacterial activity (Sriyono and Andriani, 2013; Karthiga et al., 2012; Miladiyah and Rachmawaty, 2017). This study aimed to determine the antibacterial activity of ethanol extract and fraction from *Garcinia forbesii* pericarp against *Staphylococcus aureus* and *Propionibacterium acnes* based on the diameter of the...
inhibition zone and determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The results of this study will increase the variety of plants that are scientifically proven to have antibacterial activity, and the results of this study also have the potential to be developed into new antibiotics derived from natural ingredients.

MATERIALS AND METHOD

Materials

The tools used were glassware (Pyrex® Iwaki Glass), measuring instruments (Pyrex® Iwaki Glass), autoclave (TOMY SX-500), stir bar, maceration vessel, blender (Miyako), bunsen, porcelain, separatory funnel, hot plate (MaxBlend), incubator (Memmert), laminar air flow, refrigerator, micropipette, analytical balance (Ohaus).

The ingredients used were *Garcinia forbesii* pericarp, distilled water, aluminum foil, bacteriological agar no. 1 (OXOID), barium chloride, ferric chloride, blank paper disc, cotton swab, Chloramphenicol Supplement (OXOID), liquid spirits, 70% ethanol (technical), ethyl acetate (technical), gelatin, Whatman No.1 filter paper, bacterial culture *Staphylococcus aureus* ACC 25923, *Propionibacterium acne* ATCC 6919.

Methods

1. **Plant Determination**

 Plant determination aims to match the morphological characteristics of the plants to be studied by looking at the literature, so there is no mistake in taking plants for research. Plant determination was carried out at the Basic Biology Laboratory, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, and Dr. Gunawan, S.Si., M.Si. as a botanist. Based on the test result certificate number 040a/LB.LABDASAR/I/2019 the results of the determination stated that the sample used in this study was *Garcinia forbesii*.

2. **Sample Preparation**

 Samples of *Garcinia forbesii* pericarp were wet sorted, washed, and the pericarp was separated from the fruit flesh. Then cut into thin slices and dried at 60ºC for three days. Dried samples were powdered using a grinder, then weighed and stored in a container. As much as 55 grams of dry powder of mundar pericarp was macerated with 70% ethanol at a ratio of 1:10 for 3 x 24 hours. The maceration results were filtered, the solvent was evaporated with a rotary evaporator, and concentrated with a waterbath (Anindya, 2012).

 Fractionation using *n*-hexane and ethyl acetate using the liquid-liquid extraction. The extract was dissolved in aquadest, added with *n*-hexane, and leave it until two layers were formed. The *n*-hexane fraction was taken and concentrated using a waterbath. The aquadest fraction was added with ethyl acetate solvent, shaken, and left until two layers were separated. The ethyl acetate fraction was separated and then concentrated using a waterbath (Firdausi et al, 2015).

3. **Test Sample Preparation**

 The samples used at concentrations of 1.5%, 1.25%, 1%, 0.75%, and 0.5% (b/v) from ethanol extracts, *n*-hexane fractions, and ethyl acetate fractions of *Garcinia forbesii* pericarp. The positive control used 1% chloramphenicol, while the negative control used DMSO because it was a diluent (Kaharap et al, 2016).

4. **Bacterial Rejuvenation**

 The test bacteria *Staphylococcus aureus* ATCC 25923 and *Propionibacterium acne* ATCC 6919 came from the Banjarbaru Industrial Research and Standardization Center Laboratory. Each bacterium was
taken 1 mL and then inoculated into the Nutrient Broth (NB) medium in a closed test tube and incubated at 37°C for 24 hours (Poeloengan and Praptiwi, 2010). The bacteria were incubated then visually compared for turbidity with a 0.5 McFarland standard (10⁸ colonies/mL). Other comparisons were made by plating bacteria on NA media using the pour plate method. The bacteria were diluted, then plated, and put into a petri dish, and sufficient NA media was added and then incubated for 24 hours. The incubation results were observed, and counted manually how many bacteria grew (Weinstein, 2018).

5. **Inhibition Zone Diameter Test**

Inhibition by the diffusion method use of a paper disc or the so-called Kirby Bauer method. Nutrient agar medium is prepared by mixing 15 g of agar with 13 g of nutrient broth and adding distilled water to a volume of 1000 mL. Nutrient agar sterile medium is poured into the petri dish until evenly distributed and allowed to solidify. The petri dish containing the solidified media was divided into six areas, then the bacterial suspension was smeared on the Nutrien agar medium using a sterile cotton swab. A blank paper disc is dipped into each extract and fraction according to the concentration, then affixed to the media that has been bacteria smeared, and incubated for 24 hours at 37°C. The diameter of the clear zone formed was measured with a ruler and recorded (Rachmawaty, 2016). The formula can calculate the diameter of inhibition zone:

\[
d = \frac{d_1 + d_2}{2} - x.
\]

Description:

- d1 = vertical diameter of the clear zone in the media.
- d2 = horizontal diameter of the clear zone in the media.
- X = disc paper diameter (6 mm).

6. **Minimum Inhibitory Concentration Test (MIC)**

The MIC test was carried out using the microdilution method. The bacteria to be used are equated with the McFarland standard 0.5 (10⁵ colonies/mL), which is prepared by taking 1 mL of bacteria from the 10⁸ colonies/mL previously made and put into a test tube containing 9 mL of nutrient broth, then diluted again by taking 0.5 mL of bacteria and putting it into 9.5 mL of nutrient broth, so that 10⁵ colonies/mL of bacteria are obtained. 0.1 µL bacterial suspension was put into a polypropylene PP centrifuge tube containing 0.7 µL NB, then added with 0.2 µL sample (extract or fraction). This treatment was carried out on all tubes, the only difference being the concentration used (Weinstein, 2018), and then incubated for 24 hours at 37°C. After incubating, the tube containing the bacteria and the ethanol extract sample, the n-hexane fraction and the ethyl acetate fraction were smeared on the surface of the NA media in a petri dish divided into five parts, then incubated for 24 hours at 37°C. The minimum inhibitory concentration results are taken from the lowest concentration where there is no bacterial growth (Chikezie, 2017).

7. **Minimum Bactericidal Concentration Test (MBC)**

The MBC test was carried out using the Streak plate (scratch method). MBC determinations were carried out at concentrations considered as MIC values. The NA media was put into a petri dish and allowed to solidify. Samples with MIC values were taken to be scratched on the surface of the NA media using a cotton swab, then incubated for 24 hours at 37°C. Results that show no more bacterial growth are considered MBC. A clear area on the petri dish indicates no bacterial growth. In contrast, an area that looks like streaks indicates bacterial growth, so at this concentration, it can only inhibit bacterial growth (Rachmawaty, 2016; Chikezie, 2017).
DATA ANALYSIS

The effects of the inhibition zone diameter on bacterial growth inhibition of ethanol extract samples, \(n\)-hexane fractions, and ethyl acetate fractions were analyzed using SPSS (Wahyuddin, Pakadang and Aprilyani, 2017). The data in the second stage were in the form of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Each data is presented in tabular form and interpreted according to the results obtained.

RESULT AND DISCUSSION

1. Plant Determination Test Results

The results of the determination test showed that the sample used in this study was Mundar fruit (\(Garcinia forbesii\)) based on the test results certificate Number 040a/LB.LABDASAR/I/2019. The results are that the tree has a height of 15-17 m, leaves are oblong with a width of 6.63 cm, and stem height is 3-4 m. The fruit is spherical or round with a diameter of 2-3 cm, weighing less than 90 g; the color of the fruit is red when ripe, and the color of the fruit coating is a white cream with a soft and watery texture. The seeds are light brown with an oblong shape, 1.28 cm long, 0.65 cm wide, and 0.25 cm thick.

2. Sample Preparation Results

The dry powder result obtained was 43.39 g from the 500 g wet sample. These results indicate that there is shrinkage of the sample after drying. This is due to the large amount of water in the \(Garcinia forbesii\) pericarp. Previous research stated that the water content contained in \(Garcinia forbesii\) pericarp was 11% (Mranani, 2015).

\(Garcinia forbesii\) pericarp dry powder was extracted and then calculated the extract obtained. The yield calculation results are provided in table 1. Based on the results of yield calculations, the percent yield obtained in this study is not much different from previous studies. The percent yield of \(Garcinia forbesii\) pericarp obtained in previous research extracted using 70% ethanol had a yield of 57.83% (Dewi, 2018; Marsella, 2018).

The extract obtained was then carried out by liquid-liquid fractionation. The results of \(Garcinia forbesii\) pericarp fractionation can be seen in Table 2. Based on the results of yield calculations, the ethyl acetate fraction has a more significant yield percentage than the \(n\)-hexane fraction. The yield calculation results are related to the number of metabolite compounds extracted in a sample. The sample's high content of metabolite compounds is indicated by the resulting high yield value (Sayuti, 2017). The percentage yield obtained from the \(n\)-hexane fraction of \(Garcinia forbesii\) pericarp was not much different when compared to the percent yield of the \(n\)-hexane fraction of mangosteen pericarp (\(Garcinia mangostana\)) which was 1.34% (Asifa, 2014), while the percent yield of the ethyl acetate fraction more significant than that of previous research, namely 17.08% in the ethyl acetate fraction of mangosteen pericarp (\(Garcinia mangostana\)) (Saputro, 2014; Asifa, 2014; Sayuti, 2017; Marsella, 2018; Rizki et al., 2021). The results obtained differed from the percent yield of the ethyl acetate fraction of \(Garcinia forbesii\) pericarp in previous studies, which was 28.5% (Marsella, 2018).

<table>
<thead>
<tr>
<th>Table 1. Extraction results of (Garcinia forbesii) pericarp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
</tr>
<tr>
<td>(Garcinia forbesii) ethanol extract</td>
</tr>
</tbody>
</table>

Table 2. *Garcinia forbesii* pericarp fractionation results

<table>
<thead>
<tr>
<th>Extract Weight</th>
<th>n-Hexane Fraction Weight</th>
<th>Ethyl Acetate Fraction Weight</th>
<th>n-Hexane Yield Fraction (%)</th>
<th>Ethyl acetate Yield Fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.00 g</td>
<td>0.201 g</td>
<td>14.01 g</td>
<td>1.005</td>
<td>70.05</td>
</tr>
</tbody>
</table>

3. Inhibitory Power Test Results

The results of the diameter of the inhibition zone of the samples of *Garcinia forbesii* pericarp can be seen in Table 3. The results showed that the diameter of the inhibition zone formed in the ethyl acetate fraction was more significant than in the ethanol extract and *n*-hexane fraction; this was probably due to the compounds contained in the ethyl acetate fraction of *Garcinia forbesii* pericarp being more active than those in the ethanol extract and the *n*-hexane fractions, and there were specific compounds act as antibacterial in the ethyl acetate fraction (Salni et al., 2011; Lestari et al., 2016). The samples of *Garcinia forbesii* pericarp had different inhibition zone diameters against *Staphylococcus aureus* and *Propionibacterium acne* bacteria.

Table 3. Diameter of zone inhibition in bacterial growth from samples of *Garcinia forbesii* pericarp

<table>
<thead>
<tr>
<th>Sample</th>
<th>S. aureus</th>
<th>P. acne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol Extract</td>
<td>2.16±0.983</td>
<td>2.75±1.405</td>
</tr>
<tr>
<td>n-Hexane Fraction</td>
<td>2.08±0.664</td>
<td>4.08±0.664</td>
</tr>
<tr>
<td>Ethyl Acetate Fraction</td>
<td>5.08±1.020</td>
<td>14.33±3.326</td>
</tr>
<tr>
<td>Positive Control</td>
<td>6.24±0.592</td>
<td>19.5±1.449</td>
</tr>
<tr>
<td>Negative Control</td>
<td>0±0</td>
<td>0±0</td>
</tr>
</tbody>
</table>

Antibacterial activity can be influenced by several factors, including the concentration of the sample (extract or fraction), the content of antibacterial compounds, the diffusing power of the extract or fraction, the type of bacteria that is inhibited, the thickness of the agar plate, and the sensitivity of the bacteria to samples of *Garcinia forbesii* pericarp (Prihandani et al., 2015). Based on the diameter of the inhibition zone, the positive control of 1% chloramphenicol proved that the antibiotic compound could affect positively to the growth of bacteria, while the negative control DMSO did not affect the growth of bacteria by not forming an inhibition zone.

The results showed that the activity as antibacterial of samples against *Staphylococcus aureus* bacteria was classified as weak. Based on the results of the Shapiro-Wilk test, the value of *p* > 0.05, or the data is normally distributed, the test is continued with the homogeneity test, the result is *p* < 0.05, or the data is not homogeneous. The analysis continued with a non-parametric test, namely Kruskal-Wallis and the Mann-Whitney test. The results of the Mann-Whitney test of the samples on the growth of *Staphylococcus aureus* bacteria can be seen in Table 4.

Table 4. Mann-Whitney test results for the samples of *Garcinia forbesii* pericarp against *Staphylococcus aureus* bacteria based on the diameter of the inhibition zone

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Aquadest</th>
<th>Ethanol extract</th>
<th>n-hexane fraction</th>
<th>Ethyl acetate fraction</th>
<th>Chloramphenicol 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquadest</td>
<td>-</td>
<td>0.002*</td>
<td>0.002*</td>
<td>0.002*</td>
<td>0.002*</td>
</tr>
<tr>
<td>Ethanol extract</td>
<td>0.002*</td>
<td>-</td>
<td>0.738</td>
<td>0.004*</td>
<td>0.004*</td>
</tr>
<tr>
<td>n-hexane fraction</td>
<td>0.002*</td>
<td>0.738</td>
<td>-</td>
<td>0.004*</td>
<td>0.004*</td>
</tr>
<tr>
<td>Ethyl acetate fraction</td>
<td>0.002*</td>
<td>0.004*</td>
<td>0.004*</td>
<td>-</td>
<td>0.053</td>
</tr>
<tr>
<td>Chloramphenicol 1%</td>
<td>0.002*</td>
<td>0.004*</td>
<td>0.004*</td>
<td>0.053</td>
<td>-</td>
</tr>
</tbody>
</table>

Description: *p* <0.05 there is a significant difference

SPSS analysis showed that the antibacterial activity of the ethanol extract and the *n*-hexane fraction was not much different, while the ethanol extract and ethyl acetate fraction had quite different antibacterial activity. The
antibacterial activity of the ethyl acetate fraction and the positive control was not much different; this meant that the ethyl acetate fraction had good antibacterial activity against \textit{Staphylococcus aureus} bacteria.

The results indicated that the activity as antibacterial of the ethanol extract against \textit{Propionibacterium acne} belongs to the weak category, the \textit{n}-hexane fraction belongs to the medium category, and the ethyl acetate fraction belongs to the strong category. Based on the results of the Shapiro-Wilk test, the value of \(p > 0.05 \), or the data is normally distributed, the test is continued with the homogeneity test, the result is \(p < 0.05 \), or the data is not homogeneous. The analysis was continued with a non-parametric test, namely Kruskal-Wallis, and continued with the Mann-Whitney test. The results of the Mann-Whitney test of the samples of \textit{Garcinia forbesii} pericarp on the growth of \textit{Propionibacterium acne} bacteria can be seen in Table 5.

\textbf{Table 5.} Mann-Whitney test results for the samples of \textit{Garcinia forbesii} pericarp against \textit{Propionibacterium acne} based on the diameter of the inhibition zone

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Aquadest</th>
<th>Ethanol extract</th>
<th>\textit{n}-hexane fraction</th>
<th>Ethyl acetate fraction</th>
<th>Chloramphenicol 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquadest</td>
<td>-</td>
<td>0.002*</td>
<td>0.002*</td>
<td>0.002*</td>
<td>0.002*</td>
</tr>
<tr>
<td>Ethanol extract</td>
<td>0.002*</td>
<td>-</td>
<td>0.055</td>
<td>0.004*</td>
<td>0.004*</td>
</tr>
<tr>
<td>\textit{n}-hexane fraction</td>
<td>0.002*</td>
<td>0.055</td>
<td>-</td>
<td>0.004*</td>
<td>0.004*</td>
</tr>
<tr>
<td>Ethyl acetate fraction</td>
<td>0.002*</td>
<td>0.004*</td>
<td>0.004*</td>
<td>-</td>
<td>0.013*</td>
</tr>
<tr>
<td>Chloramphenicol 1%</td>
<td>0.002*</td>
<td>0.004*</td>
<td>0.004*</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Description: * \(p < 0.05 \) there is a significant difference.

SPSS results showed that the activity as antibacterial of the ethanol extract and \(\textit{n}-\text{hexane} \) fraction was not significantly different, while the antibacterial activity of the ethanol extract, \(\textit{n}-\text{hexane} \) fraction, and ethyl acetate fraction to the positive control had quite a difference, so it can be interpreted that the resulting antibacterial activity of the ethanol extract, the \(\textit{n}-\text{hexane} \) fraction and the ethyl acetate fraction were not as substantial as the antibacterial activity of the positive control which had been shown to inhibit bacterial growth because the positive control contained antibiotics.

\textbf{4. Minimum Inhibitory Concentration Test Results (MIC)}

MIC test results for the samples of \textit{Garcinia forbesii} pericarp can be seen in Table 6. The results showed that the ethanol extract did not have MIC values for all bacteria, whereas for the \(\textit{n}-\text{hexane} \) fraction, the MIC values were obtained for \textit{Propionibacterium acne} at a concentration of 1.5\%, and for \textit{Staphylococcus aureus} bacteria, no MIC values were obtained, as well as for the ethyl acetate fraction obtained MIC values for \textit{Propionibacterium acne} bacteria at a concentration of 1\%, and MIC values were not obtained for \textit{Staphylococcus aureus} bacteria. Based on the results acquired shows that the ethyl acetate fraction has the smallest MIC value compared to other samples; these results follow the outcomes of previous tests where the ethyl acetate fraction has the largest diameter of the inhibition zone compared to other samples.

\textbf{Table 6.} Minimum inhibitory concentration (MIC) of the samples of \textit{Garcinia forbesii} pericarp

<table>
<thead>
<tr>
<th>Sample</th>
<th>Concentration (%)</th>
<th>\textit{Staphylococcus aureus}</th>
<th>\textit{Propionibacterium acne}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol extract</td>
<td>1.5</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
5. Minimum Bactericidal Concentration Test Results (MBC)

The results of the MBC test for the ethanol extract, n-hexane fraction, and ethyl acetate fraction of *Garcinia forbesii* pericarp can be seen in Table 7. The results showed that the n-hexane fraction had a MBC value against *Propionibacterium acne* at a concentration of 1.5%, or the antibacterial activity of the n-hexane fraction against *Propionibacterium acne* was bactericidal. The ethyl acetate fraction obtained the MBC value for *Propionibacterium acne* at a concentration of 1.5% and was bacteriocidal, while for *Propionibacterium acne* at a concentration of 1%, it was bacteriostatic because, at that concentration, there was bacterial growth after incubation. This is because the higher the concentration, the more antibacterial compounds are contained in the sample, so the capability to inhibit bacterial growth is higher (Adila *et al.*, 2013).

Table 7. Minimum bactericidal concentration (MBC) of ethanol extract, n-hexane fraction, and ethyl acetate fraction of *Garcinia forbesii* pericarp

<table>
<thead>
<tr>
<th>Sample</th>
<th>Concentration (%)</th>
<th>Staphylococcus aureus</th>
<th>Propionibacterium acne</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-hexane fraction</td>
<td>1.5</td>
<td>Not tested</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>Not tested</td>
<td>Not tested</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Not tested</td>
<td>Not tested</td>
</tr>
<tr>
<td>Ethyl acetate fraction</td>
<td>1.5</td>
<td>Not tested</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>Not tested</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Not tested</td>
<td>+</td>
</tr>
</tbody>
</table>

Information:
Sign (+) : there is bacterial growth
Sign (-) : no bacterial growth
Sign (-*): has no MIC value
CONCLUSION
The results of this study demonstrated that the ethyl acetate fraction of *Garcinia forbesii* pericarp was more effective than the ethanol extract and *n*-hexane fraction against *Propionibacterium acne* on the basis of zone of inhibition diameter, MIC and MBC. It has been shown to have strong antibacterial activity.

ACKNOWLEDGEMENT
Authors praise the blessings of God and thank to Faculty of Mathematics and Natural Sciences Universitas Lambung Mangkurat who has funded this research, and to everyone for their support and help.

REFERENCES

Izma et. al: Antibacterial Activity of Mundar Pericarp

