Penetapan Kadar Vitamin C Buah Nanas Segar (Ananas comocus L.) Hasil Budidaya di Kecamatan Teluk Meranti, Kabupaten Pelalawan dengan Metode Spektrofotometri UV-Vis

  • Annisa Fauzana Universitas Andalas

Abstract

Vitamin C is a water-soluble antioxidant that affect the body immune system. Vitamin C deficiency is related to the high risk of infection disease manifestation. Consuming vitamin C of 100-200 mg/day is effective to optimize physiological functions of tissues and cells. Fruits are a natural source of vitamin C that can be consume to achieve vitamin C requirement intake, such as Ananas comocus. However, the vitamin C content in Ananas comocus can be varied depending on some factors, such as their varieties, growth environment, and preparation. This research aims to determine vitamin C content in some fresh Ananas comocus fruits from three plantations in Teluk Meranti area, Pelalawan using Spectrophotometry UV-Vis method, that is a suitable method for vitamin C content determination. The result shows that the calibration curve of vitamin C giving a good linearity, with r value of 0,9943. Vitamin C content in the three plantation was varied. The content from the plantation 1, 2, and 3 was 51,1889; 48,3320; dan 144,200 mg/100 g.

 

Keywords: fresh fruit, spectrophotometer, vitamin C content determination, Teluk Meranti, Ananas comocus

Keywords: fresh fruit, spectrophotometer, vitamin C content determination, Teluk Meranti, Ananas comocus

References

Badriyah, L. and Manggara, A. B., 2015, Penetapan Kadar Vitamin C pada Cabai Merah (Capsicum annum L.) Menggunakan Metode Spektrofotometri UV-Vis, Jurnal Wiyata, 2(1), pp. 26–28.
Buettner, G. R., 1993, The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol, and Ascorbate, Archives of Biochemistry and Biophysics, 300(2), pp. 535–543. doi: https://doi.org/10.1006/abbi.1993.1074.
Carr, A. C. and Maggini, S., 2017, Vitamin C and Immune Function, Nutrients, 9(11), pp. 1–25. doi: 10.3390/nu9111211.
Colunga Biancatelli, R. M. L., Berrill, M. and Marik, P. E., 2020, The Antiviral Properties of Vitamin C, Expert Review of Anti-Infective Therapy. Taylor & Francis, 18(2), pp. 99–101. doi: 10.1080/14787210.2020.1706483.
Damayanti, E. T. and Kurniawati, P., 2017, Perbandingan Metode Penentuan Vitamin C pada Minuman Kemasan Menggunakan Metode Spektrofotometer UV-Vis dan Iodimetri, Universitas Islam Indonesia D III Analisis Kimia, (November), pp. 258–266.
Domínguez-Perles, R. et al., 2014, Brassica Foods as a Dietary Source of Vitamin C: A Review, Critical Reviews in Food Science and Nutrition. Taylor & Francis, 54(8), pp. 1076–1091. doi: 10.1080/10408398.2011.626873.
Duarte, T. L. and Lunec, J., 2005, Review: When is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C, Free radical research, 39(7), p. 671—686. doi: 10.1080/10715760500104025.
Gamboa-Santos, J. et al., 2014, Impact of Processing Conditions on The Kinetic of Vitamin C Degradation and 2-Furoylmethyl Amino Acid Formation in Dried Strawberries, Food Chemistry, 153, pp. 164–170. doi: 10.1016/j.foodchem.2013.12.004.
Hal, P. H., 2013, Processing of Marula (Sclerocarya birrea subsp. Caffra) fruits : A case study on health-promoting compounds in marula pulp.
Hemilä, H., 2017, Vitamin C and Infections, Nutrients, 9(4). doi: 10.3390/nu9040339.
Indriaty, F., 2018, Pengaruh Penambahan Sari Buah Nenas pada Permen Keras, Jurnal Penelitian Teknologi Industri, 8(2), p. 159. doi: 10.33749/jpti.v8i2.2223.
Jafari, D. et al., 2019, Vitamin C and the Immune System, in Mahmoudi, M. and Rezaei, N. (eds) Nutrition and Immunity. Cham: Springer International Publishing, pp. 81–102. doi: 10.1007/978-3-030-16073-9_5.
Kim, S. B. and Yeom, J. S., 2020, Reply: Vitamin C as a Possible Therapy for COVID-19, Infection and Chemotherapy, 52(2), pp. 224–225. doi: 10.3947/ic.2020.52.2.224.
Maulana, A. K. et al., 2019, Analisis Kadar Vitamin C pada Buah Delima (Punica granatum L.) Merah Dan Putih Secara Spektrofotometri UV-VIS, Jurnal Kimia Riset, 2(2), pp. 155–161.
Nasution, A. Y. et al., 2019, Perbandingan Kadar Vitamin C pada Nanas Segar dan Keripik Nanas dengan Metode Spektrofotometri UV-Vis, JOPS (Journal Of Pharmacy and Science), 3(1), pp. 15–20. doi: 10.36341/jops.v3i1.1067.
Nasution, A. Y. et al., 2021, Validasi Metode Analisis Vitamin C pada Buah dan Keripik Nanas Secara Spektrofotometri UV-Vis, Kartika : Jurnal Ilmiah Farmasi, 8(1), p. 16. doi: 10.26874/kjif.v8i1.251.
Nweze, C. C., Abdulganiyu, M. G. and Erhabor, O. G., 2015, Comparative Analysis of Vitamin C in Fresh Fruits Juice of Malus domestica, Citrus sinensi, Ananas comosus and Citrullus lanatus by Iodometric Titration, International Journal of Science, Environment and Technology, 4(1), pp. 17–22.
Paciolla, C. et al., 2019, Vitamin C in Plants: From Functions to Biofortification, Antioxidants, 8(11). doi: 10.3390/antiox8110519.
Pfendt, L. B. et al., 2003, Second Order Derivative Spectrophotometric Method for Determination of Vitamin C Content in Fruits, Vegetables and Fruit Juices, European Food Research and Technology, 217(3), pp. 269–272. doi: 10.1007/s00217-003-0746-8.
Prambudi, H., 2019, Perbandingan Kadar Vitamin C pada Buah Nanas Madu (Queen) dan Nanas Subang (Cayenne) yang Dijual di Pasar Kanoman Kota Cirebon, Syntax Literate, 4(4), pp. 59–67. doi: 10.36418/syntax-literate.v4i4.589.
Putri, M. P. and Setiawati, Y. H., 2015, Analisis Kadar Vitamin C pada Buah Nanas Segar (Ananas comosus (L.) Merr) dan Buah Nanas Kaleng dengan Metode Spektofotometri UV-Vis, Jurnal Wiyata, 2(1), pp. 34–38.
Rowe, S. and Carr, A. C., 2020, Global Vitamin C Status and Prevalence of Deficiency: A cause for concern?, Nutrients, 12(7), pp. 1–20. doi: 10.3390/nu12072008.
Saravia, F. and Homo-Delarche, F., 2003, Is innervation an early target in autoimmune diabetes?, Trends in Immunology, 24(11), pp. 574–579. doi: 10.1016/j.it.2003.09.010.
Schleicher, R. L. et al., 2009, Serum Vitamin C and The Prevalence of Vitamin C Deficiency in The United States: 2003-2004 National Health and Nutrition Examination Survey (NHANES), American Journal of Clinical Nutrition, 90(5), pp. 1252–1263. doi: 10.3945/ajcn.2008.27016.
da Silva, T. L. et al., 2017, Comparison Between Titrimetric and Spectrophotometric Methods for Quantification of Vitamin C, Food Chemistry, 224, pp. 92–96. doi: https://doi.org/10.1016/j.foodchem.2016.12.052.
Ströhle, A. and Hahn, A., 2009, Vitamin C and immune function, Medizinische Monatsschrift fur Pharmazeuten, 32(2), p. 49—54; quiz 55—6. Available at: http://europepmc.org/abstract/MED/19263912.
Sun, G. M. et al., 2015, Nutritional Composition of Pineapple (Ananas comosus (L.) Merr.), Nutritional Composition of Fruit Cultivars. Elsevier Inc. doi: 10.1016/B978-0-12-408117-8.00025-8.
Wali, N., 2019, Chapter 3.34 - Pineapple (Ananas comosus), in Nabavi, S. M. and Silva, A. S. (eds) Nonvitamin and Nonmineral Nutritional Supplements. Academic Press, pp. 367–373. doi: https://doi.org/10.1016/B978-0-12-812491-8.00050-3.
Wintergerst, E. S., Maggini, S. and Hornig, D. H., 2006, Immune-Enhancing Role of Vitamin C and Zinc and Effect on Clinical Conditions, Annals of Nutrition and Metabolism, 50(2), pp. 85–94. doi: 10.1159/000090495.
Published
2022-06-28
pdf (Bahasa Indonesia)
Abstract views: 2158
downloads: 1810