Prediksi Kondisi Kritis Anak di Ruangan Intensif Melalui Machine Learning: Tinjauan Literatur
Abstract
ABSTRAK
Pendahuluan: Banyak data yang harus dipantau dan didokumentasikan terkait kondisi kritis anak di ruangan intensif. Data tersebut berguna dalam proses tindak lanjut keperawatan. Seiring perkembangan teknologi, pendokumentasian data pasien di rumah sakit sudah menggunakan sistem elektronik dan bisa diolah secara digital untuk memberikan informasi dalam memprediksi kondisi pasien. Salah satu sistem untuk mengolah data tersebut dikenal dengan sebutan machine learning. Metode: Studi ini menggunakan tinjauan literatur dengan menganalisa data tentang penggunaan machine learning dalam memprediksi kondisi kritis anak secara sistematis. Tujuan: Memberikan gambaran dan gagasan dari hasil tinjauan jurnal tentang penggunaan machine learning dalam memprediksi kondisi kritis pada anak di ruangan intensif. Pembahasan: Dari hasil tinjauan 10 jurnal yang sudah dipilih, didapatkan suatu kesimpulan bahwa penggunaan machine learning dalam memberikan prediksi suatu kondisi kritis pasien lebih akurat dibandingkan metode konvensional. Rekomendasi: Diharapkan penggunaan machine learning bisa lebih dikembangkan di ruangan intensif anak yang membutuhkan tindakan yang cepat dan akurat.
Kata Kunci: Machine Learning; Prediksi Kondisi Kritis; Intensif Anak
References
Aczon, Melissa D. PhD1,2; Ledbetter, David R. BS1,2; Laksana, Eugene BS1,2; Ho, Long V. BS1,2; Wetzel, Randall C. MB BS, FAAP, FCCM, MRCP, LRCS, MSB1–3. (2019). Continuous prediction of mortality in the PICU: A recurrent Neural Network Model in a Single-Center Dataset*. Pediatric Critical Care Medicine: Volume 22 - Issue 6 - p 519-529. https://doi.org/10.1097/PCC.0000000000002682.
Bose, S. N., Greenstein, J. L., Fackler, J. C., Sarma, S. V., Winslow, R. L., & Bembea, M. M. (2021). Early Prediction of Multiple Organ Dysfunction in the Pediatric Intensive Care Unit. Frontiers in pediatrics, 9, 711104. https://doi.org/10.3389/fped.2021.711104.
Chen, J. H., & Asch, S. M. (2017). Machine Learning and Prediction in Medicine - Beyond the Peak of Inflated Expectations. The New England journal of medicine, 376(26), 2507–2509. https://doi.org/10.1056/NEJMp1702071.
Comoretto, R. I., Azzolina, D., Amigoni, A., Stoppa, G., Todino, F., Wolfler, A., Gregori, D., & On Behalf of The TIPNet Study Group (2021). Predicting Hemodynamic Failure Development in PICU using Machine Learning Techniques. Diagnostics (Basel, Switzerland), 11(7), 1299. https://doi.org/10.3390/diagnostics11071299.
Departemen Kesehatan. (2006). Standar Pelayanan Keperawatan di ICU. Direktorat Keperawatan dan Keteknisan Medis Direktorat Jenderal Pelayanan Medik DepKes RI.
Dewi, Rismala. (2016). Pediatric Early Warning System Score: Bagaimana Langkah kita selanjutnya. Jurnal Sari Pediatri Vol 18(1), hal 68-73. https://dx.doi.org/10.14238/sp18.1.2016.68.73.
Dong, J., Feng, T., Thapa-Chhetry, B., Cho, B. G., Shum, T., Inwald, D. P., Newth, C., & Vaidya, V. U. (2021). Machine learning model for early prediction of acute kidney injury (AKI) in pediatric critical care. Critical care (London, England), 25(1), 288. https://doi.org/10.1186/s13054-021-03724-0.\
Ferrari D, Milic J, Tonelli R, Ghinelli F, Meschiari M, Volpi S, et al. (2020) Machine learning in predicting respiratory failure in patients with COVID-19 pneumonia—Challenges, strengths, and opportunities in a global health emergency. PLoS ONE 15(11): e0239172. https://doi.org/10.1371/journal.pone.0239172
Ghazal, S., Sauthier, M., Brossier, D., Bouachir, W., Jouvet, P. A., & Noumeir, R. (2019). Using machine learning models to predict oxygen saturation following ventilator support adjustment in critically ill children: A single center pilot study. PloS one, 14(2), e0198921. https://doi.org/10.1371/journal.pone.0198921.
Hajari, Siti., Sawitri, Endang., Mhy, Annisa., Nugroho, Harry. (2017) Gambaran mortalitas pasien di ruang PICU RSUD Abdul Wahab Sjahranie Samarinda periode 2016-2017. Jurnal Mutiara Mahakam Vol 7(1), hal 41-57.
Kim, S.Y., Kim, S., Cho, J. et al. A deep learning model for real-time mortality prediction in critically ill children. (2019). Crit Care 23, 279. https://doi.org/10.1186/s13054-019-2561-z.
Johnson, A. E., Ghassemi, M. M., Nemati, S., Niehaus, K. E., Clifton, D. A., & Clifford, G. D. (2016). Machine Learning and decision support in Critical Care. Proceedings of the IEEE. Institute of Electrical and Electronics Engineers, 104(2), 444–466. https://doi.org/10.1109/JPROC.2015.2501978.
Lee, S. I., Celik, S., Logsdon, B. A., Lundberg, S. M., Martins, T. J., Oehler, V. G., Estey, E. H., Miller, C. P., Chien, S., Dai, J., Saxena, A., Blau, C. A., & Becker, P. S. (2018). A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nature communications, 9(1), 42. https://doi.org/10.1038/s41467-017-02465-5.
Ltifi H., Ayed M.B. (2016). Visual intelligent decision support systems in the Medical Field: Design and evaluation. In: Holzinger A. (eds) Machine Learning for health informatics. Lecture Notes in Computer Science, vol 9605. Springer, Cham. https://doi.org/10.1007/978-3-319-50478-0_12.
Matam, B. R., Duncan, H., & Lowe, D. (2019). Machine learning based framework to predict cardiac arrests in a pediatric intensive care unit: Prediction of cardiac arrests. Journal of clinical monitoring and computing, 33(4), 713–724. https://doi.org/10.1007/s10877-018-0198-0.
Neil, SchneiderWilmes, Arthur l. (2014) Predicting future health care expenses with machine learning. Milliman White Paper diakses dari www.milliman.com.
Prince, R. D., Akhondi-Asl, A., Mehta, N. M., & Geva, A. (2021). A Machine Learning Classifier Improves Mortality Prediction Compared with Pediatric Logistic Organ Dysfunction-2 Score: Model Development and Validation. Critical care explorations, 3(5), e0426. https://doi.org/10.1097/CCE.0000000000000426.
Rayan, Zeina & Alfonse, Marco & M.Salem, Abdel-Badeeh. (2019). Machine Learning Approaches in Smart Health. Procedia Computer Science. 154. 361-368. https://doi.org/10.1016/j.procs.2019.06.052.
Sánchez Fernández, I., Sansevere, A. J., Gaínza-Lein, M., Kapur, K., & Loddenkemper, (2018). Machine Learning for outcome prediction in Electroencephalograph (EEG)-Monitored children in the Intensive Care Unit. Journal of child neurology, 33(8), 546–553. https://doi.org/10.1177/0883073818773230.
Santoso, Resky Ramadhandi. (2020) Implementasi metode machine learning menggunakan algoritma evolving artificial neural network pada kasus prediksi diagnosis Diabetes Melitus. Universitas Pendidikan Indonesia, respiratory. perpustakaan.upi.edu.
Sauthier, M. S., Jouvet, P. A., Newhams, M. M., & Randolph, A. G. (2020). Machine Learning predicts prolonged acute hypoxemic respiratory failure in Pediatric severe Influenza. Critical care explorations, 2(8), e0175. https://doi.org/10.1097/CCE.0000000000000175.
Teshager, N. W., Amare, A. T., & Tamirat, K. S. (2020). Incidence and predictors of mortality among children admitted to the pediatric intensive care unit at the University of Gondar comprehensive specialized hospital, northwest Ethiopia: a prospective observational cohort study. BMJ Open, 10(101), e056746. https://doi.org/10.1136/bmj0open-2019-036746.
UKK ERIA. (2016). Buku Panduan Pelayannan Emergensi Rawat Intermediet dan Rawat Intensive Anak. Jakarta: Badan Penerbit Ikatan Dokter Anak Indonesia.
Williams, J. B., Ghosh, D., & Wetzel, R. C. (2018). Applying Machine Learning to Pediatric Critical Care Data. Pediatric critical care medicine: a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies, 19(7), 599–608. https://doi.org/10.1097/PCC.0000000000001567.
Wulandari, Diyah Fitri & Handiyani, Hanny. (2007). Pengembangan dokumentasi keperawatan berbasis elektronik di RS X Kota Depok dengan menggunakan teori perubahan Lewins. Jurnal Keperawatan Global, Vol 4 (1),hlm 1-73.
Copyright (c) 2022 Jurnal Keperawatan Abdurrab
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of all journal manuscripts is held by the Jurnal Keperawatan Abdurrab
2. Formal legal provisions to access digital articles of electronic journal are subject to the provision of the Creative Commons Attribution-ShareAlike license (CC BY-NC-SA), which means that Jurnal Keperawatan Abdurrab is rightful to keep, transfer media/format, manage in the form of databases, maintain, and publish articles.
3. Published manuscripts both printed and electronic are open access for educational, research, and library purposes. Additionally, the editorial board is not responsible for any violations of copyright law.
licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.