HUBUNGAN KADAR ASAM URAT DENGAN KEPARAHAN PENYAKIT PARKINSON

Authors

  • Elvina Zuhir Universitas Abdurrab
  • Ratih Ayuningtiyas Universitas Abdurrab
  • Putri Wulandini

DOI:

https://doi.org/10.36341/jka.v8i2.4869

Keywords:

Penyakit Parkinson, asam urat, keparahan penyakit

Abstract

  Abstract

In recent centuries, there has been an increase in life expectancy, whereas, in developed countries, the average life span is longer than in previous generations. This longer lifespan has also led to a rise in cases of chronic neurological diseases, such as Parkinson's disease. Parkinson's disease is the second most common neurodegenerative disorder after Alzheimer's disease. Its prevalence is 0.5 to 1 % after age 65 and 1 to 3 % after age 80; the disease is rare in individuals younger than 50. A decrease in dopamine levels in Parkinson's Disease produces symptoms such as bradykinesia, stiffness, tremor at rest, and postural imbalance, which become noticeable when 70-80% of dopamine-producing neurons are lost. Intracellular dopamine metabolism is susceptible to free radical production, exposing dopaminergic cells to a greater risk of oxidative stress toxicity. Urate, or uric acid, as a purine metabolite, is a powerful natural antioxidant that plays an essential role in eliminating free radicals. The study was conducted on 21 patients with Parkinson's at Bangkinang Hospital in 2023. Data collection is done by conducting a physical examination to determine the severity of Parkinson's disease and then analyzing uric acid levels. From the results of Spearman’s analysis, a p-value of 0.872 was obtained, which showed no relationship between uric acid levels and the severity of Parkinson's disease.

Keywords: Parkinson's disease, uric acid, disease severity

 

Abstrak

Dalam beberapa abad terakhir, telah terjadi peningkatan harapan hidup, sedangkan, di negara maju, rentang hidup rata-rata lebih lama daripada generasi sebelumnya. Umur yang lebih panjang ini juga menyebabkan peningkatan kasus penyakit neurologis kronis, seperti penyakit Parkinson. Penyakit Parkinson adalah gangguan neurodegeneratif paling umum kedua setelah penyakit Alzheimer. Prevalensinya adalah 0,5 hingga 1% setelah usia 65 dan 1 hingga 3% setelah usia 80; Penyakit ini jarang terjadi pada individu yang lebih muda dari 50 tahun. Penurunan kadar dopamin pada penyakit Parkinson menghasilkan gejala seperti bradikinesia, kekakuan, tremor saat istirahat, dan ketidakseimbangan postural, yang menjadi nyata ketika 70-80% neuron penghasil dopamin hilang. Metabolisme dopamin intraseluler rentan terhadap produksi radikal bebas, mengekspos sel-sel dopaminergik untuk risiko yang lebih besar toksisitas stres oksidatif. Urat, atau asam urat, sebagai metabolit purin, adalah antioksidan alami yang kuat yang memainkan peran penting dalam menghilangkan radikal bebas. Penelitian dilakukan pada 21 pasien Parkinson di Rumah Sakit Bangkinang pada tahun 2023. Pengumpulan data dilakukan dengan melakukan pemeriksaan fisik untuk mengetahui tingkat keparahan penyakit Parkinson kemudian menganalisis kadar asam urat. Dari hasil analisis Spearman, diperoleh p-value sebesar 0,872 yang menunjukkan tidak ada hubungan antara kadar asam urat dengan tingkat keparahan penyakit Parkinson.

Kata kunci: Penyakit Parkinson, asam urat, keparahan penyakit

Downloads

Download data is not yet available.

References

1. Zesiewicz, T. A. (2019) ‘Parkinson Disease’, CONTINUUM Lifelong Learning in Neurology, 25(4), pp. 896–918. doi: 10.1212/CON.0000000000000764.
2. Beitz, J. M. (2014) ‘School of Nursing-Camden, Rutgers University, 311 N. 5’, Frontiers in Bioscience, 6(3), pp. 65–74.
3. Lunati, A., Lesage, S. and Brice, A. (2018) ‘The genetic landscape of Parkinson’s disease’, Revue Neurologique, 174(9), pp. 628–643. doi: 10.1016/j.neurol.2018.08.004.
4. Armstrong, M. J. and Okun, M. S. (2020) ‘Diagnosis and Treatment of Parkinson Disease: A Review’, JAMA - Journal of the American Medical Association, 323(6), pp. 548–560. doi: 10.1001/jama.2019.22360.
5. Ishihara, L. S. et al. (2007) ‘Estimated life expectancy of Parkinson’s patients compared with the UK population’, Journal of Neurology, Neurosurgery and Psychiatry, 78(12), pp. 1304–1309. doi: 10.1136/jnnp.2006.100107.
6. Miller, D. B. and O’Callaghan, J. P. (2015) ‘Biomarkers of Parkinson’s disease: Present and future’, Metabolism: Clinical and Experimental, 64(3), pp. S40–S46. doi: 10.1016/j.metabol.2014.10.030.
7. Abbas, M. M., Xu, Z. and Tan, L. C. S. (2018) ‘Epidemiology of Parkinson’s Disease—East Versus West’, Movement Disorders Clinical Practice, 5(1), pp. 14–28. doi: 10.1002/mdc3.12568.
8. Grażyńska, A. et al. (2021) ‘The influence of serum uric acid level on non-motor symptoms occurrence and severity in patients with idiopathic parkinson’s disease and atypical parkinsonisms—a systematic review’, Medicina (Lithuania), 57(9), pp. 1–13. doi: 10.3390/medicina57090972.
9. Duarte-Jurado, A. P. et al. (2021) ‘Antioxidant therapeutics in parkinson’s disease: Current challenges and opportunities’, Antioxidants, 10(3), pp. 1–19. doi: 10.3390/antiox10030453.
10. Madeo, J. (2013) ‘The Role of Oxidative Stress in Alzheimer ’ s Disease’, Journal of Alzheimer’s Disease & Parkinsonism, 03(02), pp. 1–31. doi: 10.4172/2161-0460.1000116.
11. Braak, H. et al. (2003) ‘Staging of brain pathology related to sporadic Parkinson’s disease’, Neurobiology of Aging, 24(2), pp. 197–211. doi: 10.1016/S0197-4580(02)00065-9.
12. Poewe, W. et al. (2017) ‘Parkinson disease’, Nature Reviews Disease Primers, 3, pp. 1–21. doi: 10.1038/nrdp.2017.13.
13. Crotty, G. F., Ascherio, A. and Schwarzschild, M. A. (2017) ‘Targeting urate to reduce oxidative stress in Parkinson disease’, Experimental Neurology, 298, pp. 210–224. doi: 10.1016/j.expneurol.2017.06.017.
14. Kalia, L. V. and Lang, A. E. (2015) ‘Parkinson’s disease’, The Lancet, 386(9996), pp. 896–912. doi: 10.1016/S0140-6736(14)61393-3.
15. Martin, I. et al. (2014) ‘LRRK2 pathobiology in Parkinson’s disease’, Journal of Neurochemistry, 131(5), pp. 554–565. doi: 10.1111/jnc.12949.
16. Kaur, R., Mehan, S. and Singh, S. (2019) ‘Understanding multifactorial architecture of Parkinson’s disease: pathophysiology to management’, Neurological Sciences, 40(1), pp. 13–23. doi: 10.1007/s10072-018-3585-x.
17. Kouli, A. (2018) ‘Parkinson’s Disease: Etiology, Neuropathology, and PathogenesisKouli, A. (2018). Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. 3–26.’, pp. 3–26.
18. Przedborski, S. (2005) ‘Pathogenesis of nigral cell death in Parkinson’s disease’, Parkinsonism and Related Disorders, 11(SUPPL. 1), pp. 3–7. doi: 10.1016/j.parkreldis.2004.10.012.
19. Ascherio, A. and Schwarzschild, M. A. (2016) ‘The epidemiology of Parkinson’s disease: risk factors and prevention’, The Lancet Neurology, 15(12), pp. 1257–1272. doi: 10.1016/S1474-4422(16)30230-7.
20. Morelli, M., Simola, N. and Wardas, J. (2015) ‘The adenosinergic system: A non-dopaminergic target in Parkinson’s disease’, The Adenosinergic System: A Non-Dopaminergic Target in Parkinson’s Disease, pp. 1–326. doi: 10.1007/978-3-319-20273-0.
21. Schwarzschild, M. A. et al. (2014) ‘Inosine to increase serum and cerebrospinal fluid urate in parkinson disease a randomized clinical trial’, JAMA Neurology, 71(2), pp. 141–150. doi: 10.1001/jamaneurol.2013.5528.
22. Bakshi, R. et al. (2019) ‘Higher urate in LRRK2 mutation carriers resistant to Parkinson disease’, Annals of Neurology, 85(4), pp. 593–599. doi: 10.1002/ana.25436.
23. Weisskopf, M. G. et al. (2007) ‘Plasma urate and risk of Parkinson’s disease’, American Journal of Epidemiology, 166(5), pp. 561–567. doi: 10.1093/aje/kwm127.
24. Gao, X. et al. (2016) ‘Prospective study of plasma urate and risk of Parkinson disease in men and women’, Neurology, 86(6), pp. 520–526. doi: 10.1212/WNL.0000000000002351.
25. Kelompok Studi Movement Disorder PERDOSSI. (2015). ‘Buku panduan tatalaksana penyakit Parkinson dan gangguan gerak lainnya’. Jakarta: PERDOSSI
26. Ulhaq, Z.S., Garcia, C.P. Inflammation-related gene polymorphisms associated with Parkinson’s disease: an updated meta-analysis. Egypt J Med Hum Genet 21, 14 (2020). https://doi.org/10.1186/s43042-020-00056-6
27. Lotankar, S., Prabhavalkar, K. S. and Bhatt, L. K. (2017) ‘Biomarkers for Parkinson’s Disease: Recent Advancement’, Neuroscience Bulletin, 33(5), pp. 585–597. doi: 10.1007/s12264-017-0183-5.
28. Yacoubian, T. A., & Standaert, D. G. (2009). Targets for neuroprotection in Parkinson's disease. Biochimica et biophysica acta, 1792(7), 676–687. https://doi.org/10.1016/j.bbadis.2008.09.009
29. Hoehn MM, Yahr MD. Parkinsonism: onset, progression, and mortality. Neurology. 1998 Feb 1;50(2):318-.
30. Pagano, G., Ferrara, N., Brooks, D. J., & Pavese, N. (2016). Age at onset and Parkinson disease phenotype. Neurology, 86(15), 1400-1407. https://doi.org/10.1212/WNL.0000000000002461
31. Raket, L. L., Oudin Åström, D., Norlin, J. M., Kellerborg, K., & Odin, P. (2022). Impact of age at onset on symptom profiles, treatment characteristics and health-related quality of life in Parkinson’s disease. Scientific Reports, 12(1), 1-13. https://doi.org/10.1038/s41598-021-04356-8

Downloads

Published

2024-12-23