SIMULASI METODE BACK PROPAGATION DALAM ANALISIS KERUSAKAN RUAS JALAN LINTAS UTARA KOTA PEKANBARU

  • Alfian Saleh Universitas Lancang Kuning
  • Muthia Anggraini Universitas Lancang Kuning
  • Roki Hardianto Universitas Lancang Kuning

Abstract

The Pekanbaru City North Cross Road is a national road connects the city of Pekanbaru with the northern border of Pekanbaru which is a causeway often damaged. So we need a system to predict the damage that occurs. This research method consists of data collection, data selection, the process using the backpropagation method, analysis, and evaluation. Based on the data obtained the most damage that occurs on this road segment is 60% cracking, 30% rutting damage, and 10% for potholes. Backpropagation are weight initiation, activation, calculating input weights, output bias, and changes in weight. In these stages, the output to be achieved is obtained with the smallest error approach.. The result is that the prediction of damage made there is an increase in the number of crack damage by about 3% with an MSE error value of 0.18535 with Matlab software

Author Biography

Muthia Anggraini, Universitas Lancang Kuning

The Pekanbaru City North Cross Road is a national road connects the city of Pekanbaru with the northern border of Pekanbaru which is a causeway often damaged. So we need a system to predict the damage that occurs. This research method consists of data collection, data selection, the process using the backpropagation method, analysis, and evaluation. Based on the data obtained the most damage that occurs on this road segment is 60% cracking, 30% rutting damage, and 10% for potholes. Backpropagation are weight initiation, activation, calculating input weights, output bias, and changes in weight. In these stages, the output to be achieved is obtained with the smallest error approach. The result is that the prediction of damage made there is an increase in the number of crack damage by about 3% with an MSE error value of 0.18535 with Matlab software.

Keywords: Backpropagation, Road Damage,Simulation

References

G. Guntoro, L. Costaner, and L. Lisnawita, “Prediksi Jumlah Kendaraan di Provinsi Riau Menggunakan Metode Backpropagation,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 14, no. 1, p. 50, 2019, doi: 10.30872/jim.v14i1.1745.

E. Yuliandra, A. Abrar, and N. Abdillah, “Analisis Kerusakan Jalan Menggunakan Metode Bina Marga dan Metode Pavement Condition Index ( PCI ) ( Studi Kasus : Jalan Sudirman dan Jalan Soekarno- Hatta Kota Dumai ),” Slump Test J. Tek. Sipil, vol. 1, no. 1, pp. 29–35, 2022.

R. Agusmaniza and F. D. Fadilla, “Analisa Tingkat Kerusakan Jalan Menggunakan Metode Bina Marga (Studi Kasus Jalan Ujung Beurasok STA 0+^000 S/D STA 0+^700),” VOCATECH Vocat. Educ. Technol. J., vol. 1, no. 1, 2019, doi: 10.38038/vocatech.v1i0.7.

J. Studi et al., “Identifikasi jenis dan penanganan kerusakan jalan (studi kasus jl. g. obosxii, jl. samudin aman, jl. jati kota palangka raya),” vol. 5, pp. 28–36, 2021.

A. Munandar, S. Widodo, and E. Sulandari, “Analisa kondisi kerusakan jalan pada lapisan permukaan,” J. Mhs. Tek. Sipil Univ. Tanjungpura, vol. 3, no. 2, pp. 1–11, 2014, [Online]. Available: https://www.neliti.com/id/publications/190782/analisa-kondisi-kerusakan-jalan-pada-lapisan-permukaan-studi-kasus-jalan-adi-suc.

A. Kusnadi and R. Ranny, “Identifikasi Dini Kerusakan Jalan Flexible Pavement Dengan Menggunakan Algoritma PCA,” J. Ultim., vol. 8, no. 2, pp. 1–6, 2017, doi: 10.31937/ti.v8i2.521.

M. Program, S. Teknik, U. Maritim, R. Ali, and K. Kunci, “JARINGAN SYARAF TIRUAN BACKPROPAGATION ( Study Kasus : PDAM TIRTA KEPRI ) Ilham Aryudha Perdana,” pp. 1–12, 2016.

P. B. Prakoso, U. S. Lestari, and Y. Sari, “DETEKSI KERETAKAN PERMUKAAN PERKERASAN LENTUR JALAN RAYA ( STUDI KASUS : TANAH LUNAK DI BANJARMASIN ) Detection of Cracks on Highway Flexible Pavement Surfaces ( Case Study : Soft Soils in Banjarmasin ),” DETEKSI KERETAKAN PERMUKAAN PERKERASAN LENTUR JALAN RAYA ( Stud. KASUS TANAH LUNAK DI BANJARMASIN ) Detect. Cracks Highw. Flex. Pavement Surfaces ( Case Study Soft Soils Banjarmasin ), vol. 4, no. April, pp. 247–251, 2019, [Online]. Available: http://snllb.ulm.ac.id/prosiding/index.php/snllb-lit/article/view/194/195.

R. N. Putri and D. Setiawan, “Prototipe Jaringan Syaraf Tiruan Untuk Mendeteksi Banjir Menggunakan Metode Backpropagation,” JOISIE (Journal Inf. Syst. Informatics Eng., vol. 1, no. 2, p. 144, 2019, doi: 10.35145/joisie.v1i2.217.

F. Firdausa, R. Marpaung, and S. R. Artini, “Simulasi Metode Back Propagation Dalam Analisis Hasil Pengaruh Biji Karet Substitusi Agregat Kasar Terhadap Kuat Tekan Beton,” FROPIL (Forum Prof. Tek. Sipil), vol. 8, no. 2, pp. 56–64, 2021, doi: 10.33019/fropil.v8i2.1899.

Y. Rianto, D. Riana, and S. Nusa Mandiri, “Identifikasi Tingkat Kerusakan Jalan Raya Menggunakan Thresholding Dan K-Means Identification of Road Damage Using Thresholding and K-Means,” Csrid, vol. 13, no. 1, pp. 34–44, 2021, [Online]. Available: https://www.doi.org/10.22303/csrid.13.1.2021.34-44.

Muhaimin, Winayati, and F. Soehardi, “Analisis Kerusakan Jalan Berdasarkan Metode Surface Distress Index (Sdi) (Studi Kasus : Jalan Meranti Kota Pekanbaru Provinsi Riau),” J. Inersia, vol. 14, pp. 35–40, 2022.

H. A. Fibrian and P. Mahardi, “Prediksi Sisa Umur Perkerasan Lentur Berdasarkan International Roughhness Index (Iri) dan Lalu Lintas Harian Rata - rata (Lhr). (Studi Kasus: Ruas Batas Kota Sumenep-Kalianget STA 0+000 – STA 4+580) Habibah Ajeng Fibrian,” Rekayasa Tek. Sipil, vol. 1, no. 1, pp. 1–10, 2020.

Sugiyanto and A. N. Ahmad, “Analisis Kondisi Fungsional Ruas Jalan Jenu-Merakurak Dengan Menggunakan Metode Psi Dan Rci Serta Prediksi Sisa Umur Perkerasan Jalan ( Remaining Life ),” J. Tek. Sipil Univ. Warmadewa, vol. 11, no. 2019, pp. 127–139, 2022, doi: 10.22225/pd.11.1.4834.127-139.

F. Yudaningrum and I. Ikhwanudin, “IDENTIFIKASI JENIS KERUSAKAN JALAN (Studi Kasus Ruas Jalan Kedungmundu-Meteseh),” Teknika, vol. 12, no. 2, pp. 16–23, 2017, doi: 10.26623/teknika.v12i2.638.

L. Yesana, P. P. Sabetu, J. Grafika, and J. Grafika, “KEMAMPUAN PERKERASAN HASIL RANCANGAN OVERLAY DI JALAN SILIWANGI YOGYAKARTA untuk dapat melayani lalu lintas pada umur layanan tertentu (Manguande et al ., 2020 ; analisis komparasi perancangan tebal lapis tambah perkerasan lentur dengan metode Ma- Pekerj,” vol. 21, no. 3, pp. 207–218, 2021.

A. Martinelli et al., “Road Surface Anomaly Assessment Using Low-Cost Accelerometers: A Machine Learning Approach,” Sensors, vol. 22, no. 10, pp. 1–17, 2022, doi: 10.3390/s22103788.

G. Elnashar, R. B. Bhat, and R. Sedaghati, “Modeling pavement damage and predicting fatigue cracking of flexible pavements based on a combination of deterministic method with stochastic approach using Miner’s hypothesis,” SN Appl. Sci., vol. 1, no. 3, pp. 1–9, 2019, doi: 10.1007/s42452-019-0238-5.

A. Y. Prathama, “Pendekatan Ann (Artificial Neural Network) Untuk Penentuan Prosentase Bobot Pekerjaan Dan Estimasi Nilai Pekerjaan Struktur Pada Rumah Sakit Pratama,” J. Teknosains, vol. 7, no. 1, p. 14, 2018, doi: 10.22146/teknosains.30139.

A. M. Indrawan and A. Pandu Kusuma, “Analisis Algoritma Jaringan Syaraf Tiruan Dengan Metode Backpropagation Dalam Mendeteksi Keahlian Mahasiswa Program Studi Teknik Informatika Universitas Islam Balitar,” J. Mnemon., vol. 5, no. 1, pp. 9–13, 2021, doi: 10.36040/mnemonic.v5i1.4272.

R. Hartono, Y. Wibisono, and R. A. Sukamto, “Damropa (Damage Roads Patrol): Aplikasi Pendeteksi Jalan Rusak Memanfaatkan Accelerometer pada Smartphone,” Progr. Stud. Ilmu Komput., pp. 1–6, 2017, [Online]. Available: http://repository.upi.edu/id/eprint/17471.

Published
2023-11-14
Section
Articles
PDF (Bahasa Indonesia)
Abstract views: 173
downloads: 173