MANAJEMEN PENGETAHUAN UNTUK RISIKO BENCANA TSUNAMI –LITERATURE REVIEW
DOI:
https://doi.org/10.36341/racic.v7i2.3001Keywords:
Knowledge Management, Internet of Things, Artificial Intelligence, Disaster Risk Management, TsunamiAbstract
The application of knowledge management (KM) using Internet of Things (IoT) and Artificial Intelligence (AI) technology is able to capture, store, and disseminate disaster information in all phases of the tsunami disaster. IoT promises to provide continuous fast data, AI used in several disaster risk management applications promises to automate the analysis and dissemination of potential disaster information, as well as the results of disaster event analysis more accurately and faster. This study aims to develop an AI and IoT-based KM model for tsunami risk management based on the comparative results of previous research. The results of the comparison show that most KM, AI, and IoT research focus on the process of knowledge capture, knowledge store, knowledge sharing and mostly focus on pre-disaster. Some other KM research focuses on KM systems without AI, and IoT on the process of knowledge capture, knowledge store, knowledge sharing and only focuses on the stage of a disaster. There is very limited KM research that simultaneously examines KMS, AI, IoT in all knowledge management processes for all stages of tsunami disaster risk. The results of the comparison utilize to develop AI and IoT-based KM models for all stages of tsunami disaster risk management. This study can be a good guidance for stakeholders on the application of AI-based KM and IoT technology to manage tsunami disaster risk in Indonesia.
Downloads
References
Ahmad, H. S. (2010). Development of KM Model for Knowledge, University of Birmingham Research Archive. December, 294.
Al Mansoori, S., Salloum, S. A., & Shaalan, K. (2021). The Impact of Artificial Intelligence and Information Technologies on the Efficiency of Knowledge Management at Modern Organizations: A Systematic Review BT - Recent Advances in Intelligent Systems and Smart Applications (M. Al-Emran, K. Shaalan, & A. E. Hassanien (eds.); pp. 163–182). Springer International Publishing. https://doi.org/10.1007/978-3-030-47411-9_9
Hsu, A., Khoo, W., Goyal, N., & Wainstein, M. (2020). Next-Generation Digital Ecosystem for Climate Data Mining and Knowledge Discovery: A Review of Digital Data Collection Technologies. Frontiers in Big Data, 3(September), 1–19. https://doi.org/10.3389/fdata.2020.00029
Arifeen, A., & Nyborg, I. (2021). How humanitarian assistance practices exacerbate vulnerability: Knowledges, authority and legitimacy in disaster interventions in Baltistan, Pakistan. International Journal of Disaster Risk Reduction, 54(July 2020), 102027. https://doi.org/10.1016/j.ijdrr.2020.102027
Becerra-Fernandez, I. (2000). Role of artificial intelligence technologies in the implementation of People-Finder knowledge management systems. Knowledge-Based Systems, 13(5), 315–320. https://doi.org/10.1016/S0950-7051(00)00091-5
Caballero-Anthony, M., Cook, A. D. B., & Chen, C. (2021). Knowledge management and humanitarian organisations in the Asia-Pacific: Practices, challenges, and future pathways. International Journal of Disaster Risk ReductionKnowledge Management and Humanitarian Organisations in the Asia-Pacific: Practices, Challenges, and Future Pathways, 53(March 2020), 102007. https://doi.org/10.1016/j.ijdrr.2020.102007
Davenport, T. H., & Lawrence, P. (2000). Working Knowledge: How Organizations Manage What They Know. In Harvard Business Press (Issue January 1998). Harvard Business Press. https://doi.org/10.1145/348772.348775
Djalante, R., Garschagen, M., Thomalla, F., & Shaw, R. (2017). Introduction: Disaster Risk Reduction in Indonesia: Progress, Challenges, and Issues. In Disaster Risk Reduction in Indonesia: Progress, Challenges, and Issues. https://doi.org/10.1007/978-3-319-54466-3_1
Dorasamy, M., Raman, M., & Kaliannan, M. (2017). Integrated community emergency management and awareness system: A knowledge management system for disaster support. Technological Forecasting and Social Change, 121, 139–167. https://doi.org/10.1016/j.techfore.2017.03.017
Fikri, S., & Bahrin, S. (2004). Artificial Intelligence Support For Knowledge Management in Construction. Knowledge Management International Conference and Exhibition 2004 (KMICE 2004).
Fujitsu. (2019). Fujitsu Leverages AI Tech in Joint Project to Contribute to Safe Tsunami Evacuation in Kawasaki. International Research Institute of Disaster Science, Tohoku University, Earthquake Research Institute, The University of Tokyo, Fujitsu Limited,City of Kawasaki
Gaire, R., Sriharsha, C., Puthal, D., Wijaya, H., Kim, J., Keshari, P., Ranjan, R., Buyya, R., Ghosh, R. K., Shyamasundar, R. K., & Nepal, S. (2020). Internet of Things (IoT) and Cloud Computing Enabled Disaster Management. In Z. A. Y. (eds) Ranjan R., Mitra K., Prakash Jayaraman P., Wang L. (Ed.), Handbook of Integration of Cloud Computing, Cyber Physical Systems and Internet of Things. Scalable Computing and Communications. (pp. 273–298). Springer, Cham. https://doi.org/10.1007/978-3-030-43795-4_12
Goniewicz, K., Burkle, F. M., & Khorram-Manesh, A. (2021). The gap of knowledge and skill – One reason for unsuccessful management of mass casualty incidents and disasters. American Journal of Emergency Medicine, 46, 744–745. https://doi.org/10.1016/j.ajem.2020.09.068
Hamzah, L., Puspito, N., & Imamura, F. (2000). Tsunami Catalog and Zones in Indonesia. Journal of Natural Disaster Science, 22(1), 25–43. https://www.jstage.jst.go.jp/article/jnds/22/1/22_1_25/_pdf
Hassan, N., Hayiyusuh, N., & Nouri, R. (2011). The Implementation of Knowledge Management System (KMS) for the Support of Humanitarian Assistance/Disaster Relief (HA/DR) in Malaysia. International Journal of Humanities and Social Science, 1(4), 103–112.
Ikeda, E. K., da Silva, L. F., Penha, R., & de Oliveira, P. S. G. (2021). The relationship between the Internet of Things and knowledge management in smart ecosystem development. Knowledge and Process Management, 28(2), 181–194. https://doi.org/10.1002/kpm.1658
Jennex, M. E. (2017). Big data, the internet of things, and the revised knowledge pyramid. Data Base for Advances in Information Systems, 48(4), 69–79. https://doi.org/10.1145/3158421.3158427
Kirkland, J. (2017). IoT: Turning data into information and knowledge - IoT Agenda. Techtarget. https://www.techtarget.com/iotagenda/blog/IoT-Agenda/IoT-Turning-data-into-information-and-knowledge
Liebowitz, J. (2021). A Research Agenda for Knowledge Management and Analytics (Vol. 148). Edward Elgar Publishing, Inc.
Maier, R. (2007). Knowledge management systems: Information and communication technologies for knowledge management. In Knowledge Management Systems: Information and Communication Technologies for Knowledge Management.
Maier, R., Hädrich, T., & Peinl, R. (2005). Enterprise knowledge infrastructures. In Enterprise Knowledge Infrastructures. https://doi.org/10.1007/3-540-27514-2
Mcdonald, A., Wilcox, T., Aslam, P., Pannawadee, S., Janne, P., Animesh, K., Iria, T. C., & Omar, A. (2020). Disaster Risk Reduction in Indonesia Disaster Risk Reduction Status Report 2020. 40.
Misra, S., Mukherjee, A., & Roy, A. (2018). Knowledge discovery for enabling smart Internet of Things: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(6), 1–19. https://doi.org/10.1002/widm.1276
Nakamori, Y. (2020). Knowledge Construction Methodology Fusing Systems Thinking and Knowledge Management (K. Kijima & H. Deguchi (eds.)). Springer. https://doi.org/10.1007/978-981-13-9887-2_5
Nimbargi, S. R., Hadawale, S., & Ghodke, G. (2018). Tsunami alert & detection system using IoT: A survey. 2017 International Conference on Big Data, IoT and Data Science, BID 2017, 2018-January, 182–184. https://doi.org/10.1109/BID.2017.8336595
Nonaka, I. (2007). The Knowledge-Creating Company. Harvard Business Review. https://doi.org/10.1016/B978-0-7506-7009-8.50016-1
Noor, N. M., Abdullah, R., & Selamat, M. H. (2011). A Model of Knowledge Management System and Early Warning System (KMS EWS) for Clinical Diagnostic Environment. In J. Mohamad Zain, W. M. bt Wan Mohd, & E. El-Qawasmeh (Eds.), Software Engineering and Computer Systems (pp. 78–91). Springer Berlin Heidelberg.
Parera, J. B., Haris, A., & Ontowirjo, J. (2019). The use of the Internet of Things on Early Detection of Potential Tsunami. Jurnal Teknik Informatika, 1–8.
Prasetyo, D. B. (2020). Disain Deteksi dan Peringatan Dini Kawasan Rawan Bencana Tanah Longsor Menggunakan Internet of Thing ( IoT ).
Pribadi, K. S., Abduh, M., Wirahadikusumah, R. D., Hanifa, N. R., Irsyam, M., Kusumaningrum, P., & Puri, E. (2021). Learning from past earthquake disasters: The need for knowledge management system to enhance infrastructure resilience in Indonesia. International Journal of Disaster Risk Reduction, 64(June), 102424. https://doi.org/10.1016/j.ijdrr.2021.102424
Rahmanda, D. A., Pratomo, A. H., & Simanjuntak, O. S. (2020). Sistem Pengawasan dan Peringatan Dini Kebencanaan Pada Goa Terintegrasi Menggunakan IoT. Telematika, 17(02), 49–67.
Kusumastuti, R. D., Arviansyah, A., Nurmala, N., & Wibowo, S. S. (2021). Knowledge management and natural disaster preparedness: A systematic literature review and a case study of East Lombok, Indonesia. International Journal of Disaster Risk Reduction, 58(May) https://doi.org/10.1016/j.ijdrr.2021.102223
Santoro, G., Vrontis, D., Thrassou, A., & Dezi, L. (2018). The Internet of Things: Building a knowledge management system for open innovation and knowledge management capacity. Technological Forecasting and Social Change, 136(March), 347–354. https://doi.org/10.1016/j.techfore.2017.02.034
Sanzogni, L., Guzman, G., & Busch, P. (2017). Artificial intelligence and knowledge management: questioning the tacit dimension. Prometheus (United Kingdom), 35(1), 37–56. https://doi.org/10.1080/08109028.2017.1364547
Shah, S. A., Seker, D. Z., Hameed, S., & Draheim, D. (2019). The rising role of big data analytics and IoT in disaster management: Recent advances, taxonomy and prospects. IEEE Access, 7, 54595–54614. https://doi.org/10.1109/ACCESS.2019.2913340
Strunz, G., Post, J., Zosseder, K., Wegscheider, S., Mück, M., Riedlinger, T., Mehl, H., Dech, S., Birkmann, J., Gebert, N., Harjono, H., Anwar, H. Z., Sumaryono, Khomarudin, R. M., & Muhari, A. (2011). Tsunami risk assessment in Indonesia. Natural Hazards and Earth System Science, 11(1), 67–82.
Misra, S., Mukherjee, A., & Roy, A. (2018). Knowledge Discovery for Enabling Smart Internet-of-Things: A Survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(6), 1–35.
Tan, L., Guo, J., Mohanarajah, S., & Zhou, K. (2021). Can we detect trends in natural disaster management with artificial intelligence? A review of modeling practices. Natural Hazards, 107(3), 2389–2417. https://doi.org/10.1007/s11069-020-04429-3
Widiyantoro, S., Gunawan, E., Muhari, A., Rawlinson, N., Mori, J., Hanifa, N. R., Susilo, S., Supendi, P., Shiddiqi, H. A., Nugraha, A. D., & Putra, H. E. (2020). Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-72142-z
Downloads
Published
Issue
Section
License
1. Copyright of all journal manuscripts is held by the RACIC : Rab Construction Research
2. Formal legal provisions to access digital articles of electronic journal are subject to the provision of the Creative Commons Attribution-ShareAlike license (CC BY-NC-SA), which means that RACIC : Rab Construction Research is rightful to keep, transfer media/format, manage in the form of databases, maintain, and publish articles.
3. Published manuscripts both printed and electronic are open access for educational, research, and library purposes. Additionally, the editorial board is not responsible for any violations of copyright law.
licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.