PEMBENTUKAN MULTIKOMPONEN KRISTAL PIPERIN DAN KUERSETIN
Abstract
Penggunaan klinis piperin masih terbatas karena memiliki kelarutan rendah di dalam air. Kuersetin dikenal sebagai bioenhancer yang dapat meningkatkan bioavailibilitas senyawa lain. Penelitian ini bertujuan untuk meningkatkan kelarutan piperin dengan memodifikasinya menjadi bentuk multikomponen kristal bersama kuersetin. Pembentukan multikomponen kristal piperin-kuersetin dilakukan menggunakan metode solvent drop grinding (SDG). Multikomponen dikarakterisasi dengan Differential Scanning Calorimetry (DSC), Powders X-Ray Diffraction (PXRD) dan spektroskopi FTIR.Evaluasi multikomponen dilakukan dengan uji kelarutan dan hasilnya dianalisis menggunakan KCKT.Termogram DSC menunjukkan tidak adanya puncak endotermik baru yang berbeda nyata dari kedua komponen. Pola difraksi sinar-X multikomponen kristal piperin-kuersetin menunjukkan difraktogram yang serupa dengan komponen penyusun, yang mengindikasikan tidak terbentuknya fase kokristalin. Karakterisasi menggunakan FTIR menunjukkan hampir tidak ada pergeseran puncak serapan gugus fungsi piperin pada multikomponen kristal. Uji kelarutan dilakukan terhadap senyawa tunggal piperin, campuran fisik piperin-kuersetin dan multikomponen piperin-kuersetin (1:1) yang dibuat dengan metode SDG. Campuran fisik dan multikomponen piperin-kuersetin yang dibuat dengan metode SDG meningkatkan kelarutan piperin sebesar 1,475 kali lipat dan 1,389 kali lipat jika dibandingkan dengan piperin murni.
References
Atal, C. K., Dubey, R. K. and Singh, J. P. V. 1985. Biochemical basis of enhanced drug
bioavailability by piperine: Evidence that piperine is a potent inhibitor of drug metabolism.
Journal of Pharmacology and Experimental Therapeutics. 232(1), pp. 258–262.
Azajuddin et al. 2014. Role of herbal bioactives as a potential bioavailability enhancer for Active
Pharmaceutical Ingredients. Fitoterapia. Elsevier B.V. 97, pp. 1–14.
Aziz, D. M., Hama, J. R. and Alam, S. M. 2015. Synthesising a novel derivatives of piperine from
black pepper (Piper nigrum L.).Journal of Food Measurement and Characterization.
Springer Verlag. 9(3), pp. 324–331. doi: 10.1007/s11694-015-9239-2.
Bhalekar, M. R. et al. 2017. Formulation of piperine solid lipid nanoparticles (SLN) for treatment
of rheumatoid arthritis.Drug Development and Industrial Pharmacy. Taylor and Francis
Ltd., 43(6), pp. 1003–1010. doi: 10.1080/03639045.2017.1291666.
Boots, A. W. et al. 2008. In vitro and ex vivo anti-inflammatory activity of quercetin in healthy
volunteers.Nutrition, 24(7–8). pp. 703–710. doi: 10.1016/j.nut.2008.03.023.JOPS (Journal Of Pharmacy and Science)
Ezawa, T. et al. 2018. Characterization of the Dissolution Behavior of Piperine/Cyclodextrins
Inclusion Complexes.AAPS PharmSciTech. Springer New York LLC, 19(2), pp. 923–933.
doi: 10.1208/s12249-017-0908-9.
Kesarwani, K. and Gupta, R. 2013. Bioavailability enhancers of herbal origin: An overview.Asian
Pacific Journal of Tropical Biomedicine. Asian Pacific Tropical Biomedical Magazine,
(4), pp. 253–266. doi: 10.1016/S2221-1691(13)60060-X.
Khajuria, A., Zutshi, U. and Bedi, K. L. 1998. Permeability characteristics of piperine on oral
absorption - An active alkaloid from peppers and a bioavailability enhancer. Indian
Journal of Experimental Biology, 36(1), pp. 46–50.
Kumar, A. et al. 2019. Fourier transform infrared spectroscopy: Data interpretation and
applications in structure elucidation and analysis of small molecules and nanostructures,
Data Processing Handbook for Complex Biological Data Sources. Elsevier Inc. doi:
1016/b978-0-12-816548-5.00006-x.
Kumar, S. et al. 2018. Role of Piperine in Chemoresistance. Role of Nutraceuticals in Cancer
Chemosensitization. Academic Press, pp. 259–286. doi: 10.1016/B978-0-12-812373-
00013-9.
Lu, J. and Rohani, S. 2009. Preparation and characterization of theophylline-nicotinamide
cocrystal. Organic Process Research and Development, 13(6), pp. 1269–1275. doi:
1021/op900047r.
Mehta, A., Kaur, G. and Chintamaneni, M. 2012. Piperine and quercetine enhances antioxidant and
hepatoprotective effect of curcumin in paracetamol induced oxidative stress’.
Miltonprabu, S. 2019. Quercetin: A Flavonol With Versatile Therapeutic Applications and Its
Interactions With Other Drugs, Nonvitamin and Nonmineral Nutritional Supplements.
Elsevier Inc. doi: 10.1016/b978-0-12-812491-8.00010-2.
Müller, U. 1994. Introduction to modern vibrational spectroscopy, J. Wiley’, Berichte der
Bunsengesellschaft für physikalische Chemie, 98(10), pp. 1347–1348. doi:
1002/bbpc.19940981029.
Pachauri, M., Gupta, E. D. and Ghosh, P. C. 2015. Piperine loaded PEG-PLGA nanoparticles:
Preparation, characterization and targeted delivery for adjuvant breast cancer
chemotherapy. Journal of Drug Delivery Science and Technology. Editions de Sante, 29,
pp. 269–282. doi: 10.1016/j.jddst.2015.08.009.
Ramos, F. A. et al. 2006. Antibacterial and antioxidant activities of quercetin oxidation products
from yellow onion (Allium cepa) skin. Journal of Agricultural and Food Chemistry,
(10), pp. 3551–3557. doi: 10.1021/jf060251c.
Rinwa, P., Machawal, L. and Kumar, A. 2012. Piperine potentiates the protective effect of
quercetin against chronic unpredictable stress-induced cognitive dysfunction in mice’,
Alzheimer’s & Dementia. Elsevier Ltd, 8(4), pp. P198–P199. doi:
1016/j.jalz.2012.05.542.
Sari, Y. N., Zaini, E. and Ismed, F. 2019. Peningkatan Laju Disolusi Piperine dengan Pembentukan
Multikomponen Kristal Menggunakan Asam Nikotinat. JSFK (Jurnal Sains Farmasi &
Klinis), 6(2), pp. 180–185. doi: 10.25077/JSFK.6.2.180-185.2019.
Setiabudi, A., Hardian, R. and Mudzakir, A. 2012. Karakterisasi Material; Prinsip dan Aplikasina
dalam Penelitian Kimia.
Shaikh, J. et al. 2009. Nanoparticle encapsulation improves oral bioavailability of curcumin by at JOPS (Journal Of Pharmacy and Science)
least 9-fold when compared to curcumin administered with piperine as absorption
enhancer., European journal of pharmaceutical sciences : official journal of the European
Federation for Pharmaceutical Sciences, 37(3–4), pp. 223–30. doi:
1016/j.ejps.2009.02.019.
Thenmozhi, K. and Yoo, Y. J. 2017. Enhanced solubility of piperine using hydrophilic carrierbased potent solid dispersion systems. Drug Development and Industrial Pharmacy. Taylor
and Francis Ltd., 43(9), pp. 1501–1509. doi: 10.1080/03639045.2017.1321658.
Theses, G. and Dawn Marie Clarke, H. 2012. Scholar Commons Crystal Engineering of MultiComponent Crystal Forms: The Opportunities and Challenges in Design. Available at:
http://scholarcommons.usf.edu/etdhttp://scholarcommons.usf.edu/etd/4013 (Accessed: 27
November 2019).
Veerareddy, P. R., Vobalaboina, V. and Nahid, A. 2004. Formulation and evaluation of oil-in-water
emulsions of piperine in visceral leishmaniasis.’, Die Pharmazie, 59(3), pp. 194–7.
Yusuf, M. et al. 2013. Preparation, characterization, in vivo and biochemical evaluation of brain
targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s
disease model. Journal of Drug Targeting, 21(3), pp. 300–311. doi:
3109/1061186X.2012.747529.
Zandi, K. et al. 2011. Antiviral activity of four types of bioflavonoid against dengue virus type2.Virology Journal, 8. doi: 10.1186/1743-422X-8-560
Copyright (c) 2021 JOPS (Journal Of Pharmacy and Science)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of all journal manuscripts is held by the JOPS (Journal Of Pharmacy and Science)
2. Formal legal provisions to access digital articles of electronic journal are subject to the provision of the Creative Commons Attribution-ShareAlike license (CC BY-NC-SA), which means that JOPS (Journal Of Pharmacy and Science) is rightful to keep, transfer media/format, manage in the form of databases, maintain, and publish articles.
3. Published manuscripts both printed and electronic are open access for educational, research, and library purposes. Additiponally, the editorial board is not responsible for any violations of copyright law.
licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.