PEMBENTUKAN MULTIKOMPONEN KRISTAL PIPERIN DAN KUERSETIN

  • Adhitya Jessica Fakultas Farmasi Universitas Andalas
  • Rifka Naura Fakultas Farmasi Universitas Andalas
  • Uswatul Hasanah Fakultas Farmasi Universitas Andalas
  • Erizal Zaini Fakultas Farmasi Universitas Andalas
  • Lili Fitriani Fakultas Farmasi Universitas Andalas

Abstract

Penggunaan klinis piperin masih terbatas karena memiliki kelarutan rendah di dalam air. Kuersetin dikenal sebagai bioenhancer yang dapat meningkatkan bioavailibilitas senyawa lain. Penelitian ini bertujuan untuk meningkatkan kelarutan piperin dengan memodifikasinya menjadi bentuk multikomponen kristal bersama kuersetin. Pembentukan multikomponen kristal piperin-kuersetin dilakukan menggunakan metode solvent drop grinding (SDG). Multikomponen dikarakterisasi dengan Differential Scanning Calorimetry (DSC), Powders X-Ray Diffraction (PXRD) dan spektroskopi FTIR.Evaluasi multikomponen dilakukan dengan uji kelarutan dan hasilnya dianalisis menggunakan KCKT.Termogram DSC menunjukkan tidak adanya puncak endotermik baru yang berbeda nyata dari kedua komponen. Pola difraksi sinar-X multikomponen kristal piperin-kuersetin menunjukkan difraktogram yang serupa dengan komponen penyusun, yang mengindikasikan tidak terbentuknya fase kokristalin. Karakterisasi menggunakan FTIR menunjukkan hampir tidak ada pergeseran puncak serapan gugus fungsi piperin pada multikomponen kristal. Uji kelarutan dilakukan terhadap senyawa tunggal piperin, campuran fisik piperin-kuersetin dan multikomponen piperin-kuersetin (1:1) yang dibuat dengan metode SDG. Campuran fisik dan multikomponen piperin-kuersetin yang dibuat dengan metode SDG meningkatkan kelarutan piperin sebesar 1,475 kali lipat dan 1,389 kali lipat jika dibandingkan dengan piperin murni.

Keywords: piperine, quercetin, multicomponent crystal, solubility, HPLC

References

Atal, C. K., Dubey, R. K. and Singh, J. P. V. 1985. Biochemical basis of enhanced drug

bioavailability by piperine: Evidence that piperine is a potent inhibitor of drug metabolism.

Journal of Pharmacology and Experimental Therapeutics. 232(1), pp. 258–262.

Azajuddin et al. 2014. Role of herbal bioactives as a potential bioavailability enhancer for Active

Pharmaceutical Ingredients. Fitoterapia. Elsevier B.V. 97, pp. 1–14.

Aziz, D. M., Hama, J. R. and Alam, S. M. 2015. Synthesising a novel derivatives of piperine from

black pepper (Piper nigrum L.).Journal of Food Measurement and Characterization.

Springer Verlag. 9(3), pp. 324–331. doi: 10.1007/s11694-015-9239-2.

Bhalekar, M. R. et al. 2017. Formulation of piperine solid lipid nanoparticles (SLN) for treatment

of rheumatoid arthritis.Drug Development and Industrial Pharmacy. Taylor and Francis

Ltd., 43(6), pp. 1003–1010. doi: 10.1080/03639045.2017.1291666.

Boots, A. W. et al. 2008. In vitro and ex vivo anti-inflammatory activity of quercetin in healthy

volunteers.Nutrition, 24(7–8). pp. 703–710. doi: 10.1016/j.nut.2008.03.023.JOPS (Journal Of Pharmacy and Science)

Ezawa, T. et al. 2018. Characterization of the Dissolution Behavior of Piperine/Cyclodextrins

Inclusion Complexes.AAPS PharmSciTech. Springer New York LLC, 19(2), pp. 923–933.

doi: 10.1208/s12249-017-0908-9.

Kesarwani, K. and Gupta, R. 2013. Bioavailability enhancers of herbal origin: An overview.Asian

Pacific Journal of Tropical Biomedicine. Asian Pacific Tropical Biomedical Magazine,

(4), pp. 253–266. doi: 10.1016/S2221-1691(13)60060-X.

Khajuria, A., Zutshi, U. and Bedi, K. L. 1998. Permeability characteristics of piperine on oral

absorption - An active alkaloid from peppers and a bioavailability enhancer. Indian

Journal of Experimental Biology, 36(1), pp. 46–50.

Kumar, A. et al. 2019. Fourier transform infrared spectroscopy: Data interpretation and

applications in structure elucidation and analysis of small molecules and nanostructures,

Data Processing Handbook for Complex Biological Data Sources. Elsevier Inc. doi:

1016/b978-0-12-816548-5.00006-x.

Kumar, S. et al. 2018. Role of Piperine in Chemoresistance. Role of Nutraceuticals in Cancer

Chemosensitization. Academic Press, pp. 259–286. doi: 10.1016/B978-0-12-812373-

00013-9.

Lu, J. and Rohani, S. 2009. Preparation and characterization of theophylline-nicotinamide

cocrystal. Organic Process Research and Development, 13(6), pp. 1269–1275. doi:

1021/op900047r.

Mehta, A., Kaur, G. and Chintamaneni, M. 2012. Piperine and quercetine enhances antioxidant and

hepatoprotective effect of curcumin in paracetamol induced oxidative stress’.

Miltonprabu, S. 2019. Quercetin: A Flavonol With Versatile Therapeutic Applications and Its

Interactions With Other Drugs, Nonvitamin and Nonmineral Nutritional Supplements.

Elsevier Inc. doi: 10.1016/b978-0-12-812491-8.00010-2.

Müller, U. 1994. Introduction to modern vibrational spectroscopy, J. Wiley’, Berichte der

Bunsengesellschaft für physikalische Chemie, 98(10), pp. 1347–1348. doi:

1002/bbpc.19940981029.

Pachauri, M., Gupta, E. D. and Ghosh, P. C. 2015. Piperine loaded PEG-PLGA nanoparticles:

Preparation, characterization and targeted delivery for adjuvant breast cancer

chemotherapy. Journal of Drug Delivery Science and Technology. Editions de Sante, 29,

pp. 269–282. doi: 10.1016/j.jddst.2015.08.009.

Ramos, F. A. et al. 2006. Antibacterial and antioxidant activities of quercetin oxidation products

from yellow onion (Allium cepa) skin. Journal of Agricultural and Food Chemistry,

(10), pp. 3551–3557. doi: 10.1021/jf060251c.

Rinwa, P., Machawal, L. and Kumar, A. 2012. Piperine potentiates the protective effect of

quercetin against chronic unpredictable stress-induced cognitive dysfunction in mice’,

Alzheimer’s & Dementia. Elsevier Ltd, 8(4), pp. P198–P199. doi:

1016/j.jalz.2012.05.542.

Sari, Y. N., Zaini, E. and Ismed, F. 2019. Peningkatan Laju Disolusi Piperine dengan Pembentukan

Multikomponen Kristal Menggunakan Asam Nikotinat. JSFK (Jurnal Sains Farmasi &

Klinis), 6(2), pp. 180–185. doi: 10.25077/JSFK.6.2.180-185.2019.

Setiabudi, A., Hardian, R. and Mudzakir, A. 2012. Karakterisasi Material; Prinsip dan Aplikasina

dalam Penelitian Kimia.

Shaikh, J. et al. 2009. Nanoparticle encapsulation improves oral bioavailability of curcumin by at JOPS (Journal Of Pharmacy and Science)

least 9-fold when compared to curcumin administered with piperine as absorption

enhancer., European journal of pharmaceutical sciences : official journal of the European

Federation for Pharmaceutical Sciences, 37(3–4), pp. 223–30. doi:

1016/j.ejps.2009.02.019.

Thenmozhi, K. and Yoo, Y. J. 2017. Enhanced solubility of piperine using hydrophilic carrierbased potent solid dispersion systems. Drug Development and Industrial Pharmacy. Taylor

and Francis Ltd., 43(9), pp. 1501–1509. doi: 10.1080/03639045.2017.1321658.

Theses, G. and Dawn Marie Clarke, H. 2012. Scholar Commons Crystal Engineering of MultiComponent Crystal Forms: The Opportunities and Challenges in Design. Available at:

http://scholarcommons.usf.edu/etdhttp://scholarcommons.usf.edu/etd/4013 (Accessed: 27

November 2019).

Veerareddy, P. R., Vobalaboina, V. and Nahid, A. 2004. Formulation and evaluation of oil-in-water

emulsions of piperine in visceral leishmaniasis.’, Die Pharmazie, 59(3), pp. 194–7.

Yusuf, M. et al. 2013. Preparation, characterization, in vivo and biochemical evaluation of brain

targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s

disease model. Journal of Drug Targeting, 21(3), pp. 300–311. doi:

3109/1061186X.2012.747529.

Zandi, K. et al. 2011. Antiviral activity of four types of bioflavonoid against dengue virus type2.Virology Journal, 8. doi: 10.1186/1743-422X-8-560

Published
2021-06-30
PDF
Abstract views: 2129
downloads: 1776