Peramalan Harga Saham Menggunakan Metode Autoregressive Dan Web Scrapping Pada Indeks Saham Lq45 Dengan Python

  • Dessy Tri Anggraeni Universitas Gunadarma

Abstract

The Stock Exchange gives investors or traders the possibility to gain a profit (capital gains) or losses (capital loss) due to stock prices fluctuation. This uncertainty can be circumvented by applying forecasting methods to predict future stock prices. One of the method is Autoregressive. This method uses stock data in the past to get a formula to predict future stock prices. The stock price data history can be seen at several stock data provider pages and can be retrieved automatically using the Web Scrapper technique. This tehcnique make the result can be obtained quickly, easily, and accurately. The forecasting accuracy is measured using the MAPE (Mean Absolute Percent Error) method. This method was chosen because it is easier for commoner to understand. As a result, forecasting program are succed to give stock price predictions and their accuracy. The data tested in this study are all stocks incorporated in the LQ45 index. The average accuracy level obtained was 94,62%. The highest accuracy level is BKSL stock of 99,92% and the smallest one is ASRI stock of 90.13%.

 

References

IDX, “Saham”, www.idx.com, 2018. [Online].

Tersedia: https://www.idx.co.id/produk/saham/. [Diakses: 17 April 2020]

Sunariyah, Pengantar Pengetahuan Pasar Modal, edisi ke-5. Yogyakarta: AMP YKPN, 2005.

Partiya, Eka, “Implementasi Support Vector Machine Pada Prediksi Harga Saham Gabungan (IHSG)”, Jurnal Ilmiah Teknologi dan Rekayasa Volume 25 No 1, 2020

Ilyas, Isti Agustia, Puspita, Entiti, Rachmatin, Dewi, “Prediksi Harga Saham Menggunakan Model Jump Disfussion”, Jurnal EurekaMatika, Vol 6, No 1, 2018.

Atijah, Nabihah Hanun, Djunaidy, Arif, Mahananto, Faizal, “Pembuatan Aplikasi Prediksi Harga Saham Berbasis Web Menggunakan Metode Holt’s: Studi Kasus Di PT Bank Central Asia Tbk”, Jurnal Teknik ITS Vol 6 No 2, 2017.

Anggraeni, D. T., “Peramalan Harga Saham Menggunakan Metode Simple Moving Average dan Web Scrapping”, Jurnal Ilmiah MATRIK, Vol 21 No 3, hlm. 234-241, Desember 2019.

IDX, “Indeks”, www.idx.com, 2018. [Online].

Tersedia: https://www.idx.co.id/produk/indeks/. [Diakses: 17 April 2020]

Indonesia Stocx Exchange. IDX LQ45 : Index Member Profile. Jakarta : Statistical Publication Unit, Research and Development Division, Indonesia Stock Exchange, 2019.

Josi, A., Andretti Abdillah, L., Suryayusra, “Penerapan Teknik Web Scraping Pada Mesin Pencari Artikel Ilmiah”, arXiv e-prints arXiv:1410.5777

Atmaja, L. S., Memahami Statistika Bisnis, Yogyakarta: Andi, 1997.

Vulandari, Retno Tri, Andarasni Parwitasari, Tika, “Perbandingan Model AR(1), ARMA(1,1), dan ARIMA(1,1,1) Pada Prediksi Tinggi Muka Air Sungai Bengawan Solo Pada Pos Pemantauan Jurug”. MUST : Journal of Mathematics Education, Science and Technology Vol. 3, No. 1, hlm 46 – 56, 2018.

Sanders, Nada, Peramalan Fundamentals, New York: Business Expert Press, 2016.

Published
2020-07-20
How to Cite
[1]
D. Anggraeni, “Peramalan Harga Saham Menggunakan Metode Autoregressive Dan Web Scrapping Pada Indeks Saham Lq45 Dengan Python”, rabit, vol. 5, no. 2, pp. 138-145, Jul. 2020.
Section
Articles
PDF (Bahasa Indonesia)
Abstract views: 992
downloads: 1032