PERANCANGAN KLASIFIKASI PASIEN STROKE DENGAN METODE K-NEAREST NEIGHBOR

  • Rahmat Ardila Dwi Yulianto Universitas Ahmad Dahlan
  • Imam Riadi Universitas Ahmad Dahlan
  • Rusydi Umar Universitas Ahmad Dahlan

Abstract

Stroke is a disease characterized by impaired brain function caused by a lack of oxygen supply and blood flow to the brain, affecting several brain functions that make sufferers experience difficulty in carrying out activities. the classification of stroke patients found is still in the form of medical records that have not been integrated so it takes longer time to detect. The K-NN algorithm is part of a machine learning algorithm that can be used to classify one of the cases, namely the classification of stroke patients. K-NN is used as a class determining algorithm to enter new data that is input according to the format. Based on the results obtained, this study leads to system design using the Unified Model Language (UML) and system user interface design.

Keywords: Classsication, K-NN, Sroke, UML

References

C. W. Yean et al., “An emotion assessment of stroke patients by using bispectrum features of EEG signals,” Brain Sci., vol. 10, no. 10, pp. 1–22, 2020, doi: 10.3390/brainsci10100672.

R. E. Pambudi, Sriyanto, and Firmansyah, “Klasifikasi Penyakit Stroke Menggunakan Algoritma Decision Tree C.45 1,2,3,” vol. 16, no. x, pp. 221–226, 2022.

Kemenkes RI, “Stroke Dont Be The One,” p. 10, 2018.

R. S. Hutama, N. Hidayat, and E. Santoso, “Sistem Pakar Deteksi Dini Penyakit Stroke Menggunakan Metode Naïve Bayes-Certainty Factor,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 4333–4339, 2018.

P. Govindarajan, R. K. Soundarapandian, A. H. Gandomi, R. Patan, P. Jayaraman, and R. Manikandan, “Classification of stroke disease using machine learning algorithms,” Neural Comput. Appl., vol. 32, no. 3, pp. 817–828, 2020, doi: 10.1007/s00521-019-04041-y.

A. H. Alamri, “Application of machine learning to stress corrosion cracking risk assessment,” Egypt. J. Pet., vol. 31, no. 4, pp. 11–21, 2022, doi: 10.1016/j.ejpe.2022.09.001.

I. G. Bendesa Subawa, “Prediksi Kelulusan Mahasiswa Menggunakan Teorema Teorema Bayes,” Janapati, vol. 8, no. 3, pp. 227–236, 2019.

Isman, Andani Ahmad, and Abdul Latief, “Perbandingan Metode KNN Dan LBPH Pada Klasifikasi Daun Herbal,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, pp. 557–564, 2021, doi: 10.29207/resti.v5i3.3006.

N. N. Dzikrulloh and B. D. Setiawan, “Penerapan Metode K – Nearest Neighbor ( KNN ) dan Metode Weighted Product ( WP ) Dalam Penerimaan Calon Guru Dan Karyawan Tata Usaha Baru Berwawasan Teknologi ( Studi Kasus : Sekolah Menengah Kejuruan Muhammadiyah 2 Kediri ),” Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 5, pp. 378–385, 2017.

A. Bode, “K-Nearest Neighbor Dengan Feature Selection Menggunakan Backward Elimination Untuk Prediksi Harga Komoditi Kopi Arabika,” Ilk. J. Ilm., vol. 9, no. 2, pp. 188–195, 2017, doi: 10.33096/ilkom.v9i2.139.188-195.

N. Nafiah, “Klasifikasi Kematangan Buah Mangga Berdasarkan Citra HSV dengan KNN,” J. Elektron. List. dan Teknol. Inf. Terap., vol. 1, no. 2, pp. 1–4, 2019, [Online]. Available: https://ojs.politeknikjambi.ac.id/elti

D. Marini Umi Atmaja, A. Rahman Hakim, D. Haryadi, and N. Suwaryo, “Penerapan Algoritma K-Nearest Neighbor Untuk Prediksi Pengelompokkan Tingkat Risiko Penyebaran Covid-19 Jawa Barat,” Dewi Mar. Umi Atmaja, SNTEM, vol. 1, pp. 1218–1226, 2021.

Z. Zuriati and N. Qomariyah, “Klasifikasi Penyakit Stroke Menggunakan Algoritma K-Nearest Neighbor ( KNN ) Classification of Stroke Using the K-Nearest Neighbor ( KNN ) Algorithm,” vol. 1, no. 1, pp. 1–8, 2023.

D. Nopia and Z. Huzaifah, “Hubungan Antara Klasifikasi Stroke,” J. Nurs. Invent., vol. 1, no. 1, pp. 16–22, 2020.

R. G. Tiwari, A. Pratap Srivastava, G. Bhardwaj, and V. Kumar, “Exploiting UML Diagrams for Test Case Generation: A Review,” Proc. 2021 2nd Int. Conf. Intell. Eng. Manag. ICIEM 2021, pp. 457–460, 2021, doi: 10.1109/ICIEM51511.2021.9445383.

M. N. Arifin and D. Siahaan, “Structural and Semantic Similarity Measurement of UML Use Case Diagram,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 11, no. 2, p. 88, 2020, doi: 10.24843/lkjiti.2020.v11.i02.p03.

T. Ahmad, J. Iqbal, A. Ashraf, D. Truscan, and I. Porres, “Model-based testing using UML activity diagrams: A systematic mapping study,” Comput. Sci. Rev., vol. 33, pp. 98–112, 2019, doi: 10.1016/j.cosrev.2019.07.001.

H. Abbad Ur Rehman, C. Y. Lin, and Z. Mushtaq, “Effective K-Nearest Neighbor Algorithms Performance Analysis of Thyroid Disease,” J. Chinese Inst. Eng. Trans. Chinese Inst. Eng. A, vol. 44, no. 1, pp. 77–87, 2021, doi: 10.1080/02533839.2020.1831967.

Published
2023-09-11
How to Cite
[1]
R. A. Yulianto, I. Riadi, and R. Umar, “PERANCANGAN KLASIFIKASI PASIEN STROKE DENGAN METODE K-NEAREST NEIGHBOR”, rabit, vol. 8, no. 2, pp. 262-268, Sep. 2023.
Section
Articles
PDF (Bahasa Indonesia)
Abstract views: 405
downloads: 264