ANALISIS SENTIMEN PENGGUNA APLIKASI CHATGPT BERDASARKAN RATING MENGGUNAKAN METODE LEXICON

  • Siti Mujilahwati Universitas Islam Lamongan

Abstract

The study aims to evaluate the feelings of ChatGPT users based on the given rating, using lexicon methods to classify feelings in user comments without requiring prior class labels. This lexicon method uses the vader lexicon dictionary to calculate the sentimental polarity of words in comments. The comment data set is obtained from an external source, namely the Kaggle data set, which did not have a previous sentiment label. The lexicon model is applied as an unsupervised learning approach to understanding the expression of user sentiment. The comments in the dataset are processed and analyzed using a lexicon model. The results of this sentimental analysis show that the lexicon method produces comments that tend to be positive or negative for the rating range one to five. Nonetheless, research findings suggest that some aspects of sentiment may not be accurately detected by this method. Nevertheless, this sentiment analysis provides an important basis for further understanding of the interaction between users and applications. These results can be the basis for more in-depth research involving more sophisticated approaches to sentiment analysis.

Keywords: Analysis Sentiment, ChatGPT, Lexicon

References

B. Liu, Sentiment analysis: Mining opinions, sentiments, and emotions. 2015. doi: 10.1017/CBO9781139084789.

K. Arun and A. Srinagesh, “Multi-lingual Twitter sentiment analysis using machine learning,” International Journal of Electrical and Computer Engineering, vol. 10, no. 6, pp. 5992–6000, 2020, doi: 10.11591/ijece.v10i6.pp5992-6000.

A. Baliyan, A. Batra, and S. P. Singh, “Multilingual sentiment analysis using RNN-LSTM and neural machine translation,” in Proceedings of the 2021 8th International Conference on Computing for Sustainable Global Development, INDIACom 2021, 2021. doi: 10.1109/INDIACom51348.2021.00126.

A. Mehta, Y. Parekh, and S. Karamchandani, “Performance evaluation of machine learning and deep learning techniques for sentiment analysis,” in Advances in Intelligent Systems and Computing, 2018. doi: 10.1007/978-981-10-7512-4_46.

P. Cen, K. Zhang, and D. Zheng, “Sentiment Analysis Using Deep Learning Approach,” vol. 2, no. 1, pp. 17–27, 2020, doi: 10.32604/jai.2020.010132.

M. Heikal, “ScienceDirect Sentiment Analysis of Arabic Tweets using Deep Learning Sentiment Analysis of ∗ Arabic Tweets using Deep Learning,” Procedia Comput Sci, vol. 142, pp. 114–122, 2018, doi: 10.1016/j.procs.2018.10.466.

C. N. Dang, M. N. Moreno-García, and F. De La Prieta, “Hybrid Deep Learning Models for Sentiment Analysis,” Complexity, vol. 2021, 2021, doi: 10.1155/2021/9986920.

C. N. Dang, M. N. Moreno-García, and F. De La Prieta, “Hybrid Deep Learning Models for Sentiment Analysis,” Complexity, vol. 2021, 2021, doi: 10.1155/2021/9986920.

P. Sreevidya, S. Veni, A. V. Vidyapeetham, A. V. Vidyapeetham, and A. Info, “Sentiment analysis by deep learning approaches 1,3,” vol. 18, no. 2, pp. 752–760, 2020, doi: 10.12928/TELKOMNIKA.v18i2.13912.

M. Muadin and H. Asnal, “Implementasi Metode Support Vector Machine Pada Opinion Mining Masyarakat Terkait Chatgpt,” JOISIE Journal Of Information System And Informatics Engineering, vol. 7, no. 1, pp. 78–84, 2023.

A. Erfina and M. Rifki Nurul, “Implementation of Naive Bayes classification algorithm for Twitter user sentiment analysis on ChatGPT using Python programming language,” Data & Metadata, vol. 2, p. 45, Jun. 2023, doi: 10.56294/dm202345.

Y. Albalawi, J. Buckley, and N. S. Nikolov, “Investigating the impact of pre-processing techniques and pre-trained word embeddings in detecting Arabic health information on social media,” J Big Data, vol. 8, no. 1, 2021, doi: 10.1186/s40537-021-00488-w.

A. F. Hidayatullah and M. R. Ma’arif, “Pre-processing Tasks in Indonesian Twitter Messages,” J Phys Conf Ser, vol. 755, no. 1, 2016, doi: 10.1088/1742-6596/755/1/011001.

S. Mujilahwati, “Pre-Processing Text Mining Pada Data Twitter,” Seminar Nasional Teknologi Informasi dan Komunikasi, vol. 2016, no. Sentika, pp. 2089–9815, 2016.

R. Feldman and J. Sanger, “Text Mining Preprocessing Techniques,” in The Text Mining Handbook, Cambridge University Press, 2006, pp. 57–63. doi: 10.1017/CBO9780511546914.004.

Published
2023-12-27
How to Cite
[1]
S. Mujilahwati, “ANALISIS SENTIMEN PENGGUNA APLIKASI CHATGPT BERDASARKAN RATING MENGGUNAKAN METODE LEXICON”, rabit, vol. 9, no. 1, pp. 131-137, Dec. 2023.
Section
Articles
PDF (Bahasa Indonesia)
Abstract views: 269
downloads: 260