IMPLEMENTASI K-MEANS CLUSTERING PADA DATA PENGELOMPOKAN PENDAFTARAN MAHASISWA BARU (STUDI KASUS UNIVERSITAS ABDURRAB)

  • Muhammad Hanif Abdurrohman UIN Suska Riau
  • Elin Haerani Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Fadhilah Syafria Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Lola Oktavia Universitas Islam Negeri Sultan Syarif Kasim Riau

Abstract

Facing the complex dynamics of freshman enrollment, the k-means clustering method was introduced as the main approach. The focus is on Abdurrab University, where various attributes of prospective students are investigated, including gender, parental education, parental income, hometown, province, age, and choice of study program. With the k-means clustering algorithm, the purpose of the study is to uncover the underlying patterns of preferences and characteristics of new student groups. The results of this study provide in-depth insight into the factors that influence the decision to admit new students in the campus environment of Abdurrab University. In this study Davies-Bouldin Index (DBI) was used as a method to determine the optimal number of clusters, the lowest DBI value was 1.5 which occurred in 8 clusters. This shows that 8 clusters is the optimal number of clusters for data that has been transformed and is ready for k-means clustering. After carrying out the clustering process with the K-Means method which involves the formation of 8 clusters, to show patterns and insights from the clustering results, there are two ways used in this study, first make a heatmap of the correlation of features displayed, information can be obtained about the relationship between variables. The correlation value ranges from -0.4 to 1.0 where positive values indicate a positive correlation and negative values indicate a negative correlation. A positive correlation means that if the value of one variable increases, then the value of the other variable also tends to increase. Conversely, negative correlation means that if the value of one variable increases, then the value of the other variable tends to decrease.

Keywords: K-Means Clustering, New Student Admission, Abdurrab University, Student Selection, Data Analysis

References

M. Arhami and M. Nasir, Data Mining - Algoritma dan Implementasi. Penerbit Andi, 2020. [Online]. Available: https://books.google.co.id/books?hl=id&lr=&id=AtcCEAAAQBAJ&oi=fnd&pg=PP1&dq=ARHAMI+NASIR&ots=hDhlOM5Wr8&sig=jqLWHIAwU9vMbVwAEHH9hbxJKj8&redir_esc=y#v=onepage&q=ARHAMI NASIR&f=false

R. K. Dinata, S. Safwandi, N. Hasdyna, and N. Azizah, “Analisis K-Means Clustering pada Data Sepeda Motor,” INFORMAL Informatics J., vol. 5, no. 1, p. 10, 2020, doi: 10.19184/isj.v5i1.17071.

S. Aulia, “Klasterisasi Pola Penjualan Pestisida Menggunakan Metode K-Means Clustering (Studi Kasus Di Toko Juanda Tani Kecamatan Hutabayu Raja),” Djtechno J. Teknol. Inf., vol. 1, no. 1, pp. 1–5, 2021, doi: 10.46576/djtechno.v1i1.964.

A. Muhartini, O. Sahroni, S. Rahmawati, Dwi, T. Febrianti, and I. Mahuda, “ANALISIS PERAMALAN JUMLAH PENERIMAAN MAHASISWA BARU DENGAN MENGGUNAKAN METODE REGRESI LINEAR SEDERHANA Ajeng,” J. Bayesian J. Ilm. Stat. dan Ekon., vol. 1, 2021, doi: 10.30604/jika.v7i2.1507.

L. Lathifah, “Penerapan Enterprise Architecture pada Penerimaan Mahasiswa Baru menggunakan TOGAF di Universitas X Palembang,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 3, pp. 647–655, 2020, doi: 10.35957/jatisi.v7i3.565.

D. Dona and M. Rifqi, “Penerapan Metode K-Means Clustering Untuk Menentukan Status Gizi Baik Dan Gizi Buruk Pada Balita (Studi Kasus Kabupaten Rokan Hulu),” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 7, no. 2, pp. 179–191, 2022, doi: 10.36341/rabit.v7i2.2171.

E. Ramadanti and M. Muslih, “Penerapan Data Mining Algoritma K-Means Clustering Pada Populasi Ayam Petelur Di Indonesia,” 2022 doi: 10.36341/rabit.v7i1.2155.

N. Sunanto and G. Falah, “Penerapan Algoritma C4.5 Untuk Membuat Model Prediksi Pasien Yang Mengidap Penyakit Diabetes,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 7, no. 2, pp. 208–216, 2022, doi: 10.36341/rabit.v7i2.2435.

“UNDANG UNDANG REPUBLIK INDONESIA NOMOR 20 TAHUN 2003 TENTANG SISTEM PENDIDIKAN NASIONAL.” 2003.

E. Buulolo, Data Mining Untuk Perguruan Tinggi. Sleman: CV BUDI UTAMA, 2020. [Online]. Available: https://books.google.co.id/books?hl=id&lr=&id=-K_SDwAAQBAJ&oi=fnd&pg=PP1&dq=Buulolo+2020&ots=Kezq5Rx3Qk&sig=O70NsVBl38e-bhW-3r7uQB-0EHU&redir_esc=y#v=onepage&q=Buulolo 2020&f=false

I. Nuryani and D. Darwis, “Analisis Clustering Pada Pengguna Brand Hp Menggunakan Metode K-Means,” Pros. Semin. Nas. Ilmu Komput., vol. 1, no. 1, p. 2021, 2021.

A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,” J. Tekno Kompak, vol. 15, no. 2, p. 25, 2021, doi: 10.33365/jtk.v15i2.1162.

F. Yunita, “Penerapan Data Mining Menggunkan Algoritma K-Means Clustring Pada Penerimaan Mahasiswa Baru,” Sistemasi, vol. 7, no. 3, p. 238, 2018, doi: 10.32520/stmsi.v7i3.388.

W. Gie and D. Jollyta, “Perbandingan Euclidean dan Manhattan Untuk Optimasi Cluster Menggunakan Davies Bouldin Index: Status Covid-19 Wilayah Riau,” Pros. Semin. Nas. Ris. Dan Inf. Sci., vol. 2, no. April, pp. 187–191, 2020.

E. Muningsih, I. Maryani, and V. R. Handayani, “Penerapan Metode K-Means dan Optimasi Jumlah Cluster dengan Index Davies Bouldin untuk Clustering Propinsi Berdasarkan Potensi Desa,” J. Sains dan Manaj., vol. 9, no. 1, p. 96, 2021, [Online]. Available: www.bps.go.id

Published
2024-01-03
How to Cite
[1]
M. Abdurrohman, E. Haerani, F. Syafria, and L. Oktavia, “IMPLEMENTASI K-MEANS CLUSTERING PADA DATA PENGELOMPOKAN PENDAFTARAN MAHASISWA BARU (STUDI KASUS UNIVERSITAS ABDURRAB)”, rabit, vol. 9, no. 1, pp. 138-147, Jan. 2024.
Section
Articles
PDF (Bahasa Indonesia)
Abstract views: 129
downloads: 141