PENERAPAN HOUGH TRANSFORM, CONNECTED COMPONENT LABELING DAN TEMPLATE MATCHING UNTUK PENGENALAN KARAKTER PLAT KENDARAAN

Abstract

Vehicle license plates are the identities of motor vehicles that are often used for record-keeping when using paid parking lots. Recording vehicle license plates requires the application of information technology so that parking service administration is more efficient and free from recording errors. Information technology offers the application of OCR (Optical Character Recognition) methods to help the process of recording characters found on vehicle license plates. OCR has many techniques that can help the character recognition process, starting from the initial image capture process to the recognition stage. The initial image stage after being captured is to perform the initial image processing process by converting the image, determining the vehicle license plate area in the vehicle image, performing character labeling and segmentation on the plate image, and performing character recognition. The approach to character recognition on vehicle license plates that will be used is Hough Transform for determining the vehicle license plate area, character labeling and segmentation with Connected Component Labeling, and Template Matching as a character recognition method. The vehicle license plate character recognition model was tested with a scenario of 25 images captured directly from the parking lot. The test results produced Hough Transform and Connected Component Labeling could determine the vehicle license plate area and perform character labeling and segmentation on the vehicle license plate. Whereas in the template matching stage, the character recognition accuracy on 25 vehicle license plates was 94%. Other findings in this study are that the lighting conditions of the image environment, the number of images that become the database, and the condition of the paint of motor vehicle license plates can improve accuracy.

Keywords: Indonesia

References

H. Shi and D. Zhao, “License Plate Recognition System Based on Improved YOLOv5 and GRU,” IEEE Access, vol. 11, 2023, doi: 10.1109/ACCESS.2023.3240439.

S. S.KOM., Hamdan, Eni Heni Hermaliani, Tuti Haryanti, and Windu Gata, “Penerapan Finite State Automata Pada Vending Machine Sistem Parkir Kendaraan Motor,” Jurnal Ilmiah Betrik, vol. 12, no. 2, 2021, doi: 10.36050/betrik.v12i2.324.

B. P. Statistika, “Statistika Kriminal 2021,” E-Book. 2021.

D. Jonas, I. A. Supriyono, and H. Junianto, “Perancangan Sistem Pencegahan Pencurian Kendaraan Bermotor Berbasis ESP32 pada PT. Suwarna Dwipa Maju,” Technomedia Journal, vol. 7, no. 2, 2022, doi: 10.33050/tmj.v7i2.1748.

D. Hernikawati, “Perbandingan Solusi Parkir Konvensional dengan Smart Parking,” Majalah Semi Ilmiah Populer Komunikasi Massa, vol. 2, no. 2, 2021.

M. M. Khan, M. U. Ilyas, I. R. Khan, S. M. Alshomrani, and S. Rahardja, “License Plate Recognition Methods Employing Neural Networks,” IEEE Access, vol. 11, 2023, doi: 10.1109/ACCESS.2023.3254365.

Lubna, N. Mufti, and S. A. A. Shah, “Automatic Number Plate Recognition : A Detailed Survey of,” Sensors, vol. 21, no. 9, 2021.

N. N. Kamal and E. Tariq, “License Plate Tilt Correction: A Review,” Engineering and Technology Journal, vol. 39, no. 1B, 2021, doi: 10.30684/etj.v39i1b.1839.

I. Kusumadewi, C. A. Sari, D. R. I. Moses Setiadi, and E. H. Rachmawanto, “License Number Plate Recognition using Template Matching and Bounding Box Method,” in Journal of Physics: Conference Series, 2019. doi: 10.1088/1742-6596/1201/1/012067.

G. Lin, B. Xue, B. Xu, and C. Chen, “License plate recognition based on mathematical morphology and template matching,” in Proceedings - 2019 Chinese Automation Congress, CAC 2019, 2019. doi: 10.1109/CAC48633.2019.8996973.

K. Yogheedha, A. S. A. Nasir, H. Jaafar, and S. M. Mamduh, “Automatic Vehicle License Plate Recognition System Based on Image Processing and Template Matching Approach,” in 2018 International Conference on Computational Approach in Smart Systems Design and Applications, ICASSDA 2018, 2018. doi: 10.1109/ICASSDA.2018.8477639.

Y. Septiana, A. Mulyani, D. Kurniadi, and H. Hasanudin, “Handwritten recognition of Hiragana and Katakana characters based on template matching algorithm,” IOP Conf Ser Mater Sci Eng, vol. 1098, no. 3, 2021, doi: 10.1088/1757-899x/1098/3/032093.

A. S. Emza Pratama, “Prototipe System Smart Parking Dengan Identifkasi Plat Nomor Berbasis Optical Character Recognition,” jurnal ilmiah indonesia, vol. 7, no. 8.5.2017, 2022.

M. A. M. B. Kamaruzaman and N. R. M. Nasir, “PARKEY: Ticket-less parking system using license plate recognition approach,” in Journal of Physics: Conference Series, 2021. doi: 10.1088/1742-6596/1860/1/012006.

J. Shashirangana, H. Padmasiri, D. Meedeniya, and C. Perera, “Automated license plate recognition: A survey on methods and techniques,” IEEE Access, vol. 9. 2021. doi: 10.1109/ACCESS.2020.3047929.

Joshua, J. Hendryli, and D. E. Herwindiati, “Automatic license plate recognition for parking system using convolutional neural networks,” in Proceedings of 2020 International Conference on Information Management and Technology, ICIMTech 2020, 2020. doi: 10.1109/ICIMTech50083.2020.9211173.

T. Vaiyapuri, S. NandanMohanty, M. Sivaram, I. V. Pustokhina, D. A. Pustokhin, and K. Shankar, “Automatic vehicle license plate recognition using optimal deep learning model,” Computers, Materials and Continua, vol. 67, no. 2, 2021, doi: 10.32604/cmc.2021.014924.

F. Spagnolo, F. Frustaci, S. Perri, and P. Corsonello, “An efficient connected component labeling architecture for embedded systems,” Journal of Low Power Electronics and Applications, vol. 8, no. 1, 2018, doi: 10.3390/jlpea8010007.

A. M. Hassan, S. A. Ghoul, and A. A. Alkabir, “Libyan Vehicle License Plate Recognition with Support Vector Machine,” Al-Mukhtar Journal of Sciences, vol. 37, no. 1, 2022, doi: 10.54172/mjsc.v37i1.525.

Moch. Fachrur Rozi, Haryanto, and Kunto Aji Wibisono, “Klasifikasi Kecacatan Keramik Dengan Menggunakan Deteksi Tepi Canny Dan Metode Hough Line Transform,” J-Eltrik, vol. 1, no. 2, p. 36, Nov. 2021, doi: 10.30649/j-eltrik.v1i2.36.

Published
2024-07-10
How to Cite
[1]
F. Fredicia and G. Santoso, “PENERAPAN HOUGH TRANSFORM, CONNECTED COMPONENT LABELING DAN TEMPLATE MATCHING UNTUK PENGENALAN KARAKTER PLAT KENDARAAN”, rabit, vol. 9, no. 2, pp. 317-329, Jul. 2024.
Section
Articles
PDF (Bahasa Indonesia)
Abstract views: 69
downloads: 62