ANALISIS FAKTOR YANG MEMPENGARUHI PEMILIHAN GUBERNUR DAERAH KHUSUS JAKARTA MENGGUNAKAN ALGORITMA NAIVE BAYES DAN REGRESI LOGISTIK

  • Yoga Nanda Khoiril Umat Universitas Mercu Buana
  • Dhiaz Rusyda Nafsyi Universitas Mercu Buana
  • Diana Kusumaningsih Universitas Mercu Buana
  • Lukman Hakim Universitas Mercu Buana

Abstract

The election of the Governor and Deputy Governor of the Special Region of Jakarta (DKJ) in 2024 involves the community in determining leaders for the 2024-2029 period. This research analyzes the factors influencing voter decisions using the Naive Bayes algorithm and Logistic Regression. Survey data was collected via a Google Form questionnaire from Jakarta residents aged 17-71. The analysis process involves several stages: problem identification, literature study, data collection, preprocessing, and dividing the data into training and test data. The Naive Bayes algorithm is used to predict classification parameters based on a candidate's education, popularity, and track record, while Logistic Regression predicts factors that influence voter decisions. Naive Bayes shows high accuracy with advantages in speed and processing large data, while Logistic Regression shows strength in binary and multinomial classification analysis. The research results show that the track record factor significantly influences voter decisions. Naive Bayes prediction accuracy reached 85.00% and Logistic Regression 80.00%.  The analysis results also reveal that the candidate's popularity and education factors rationally influence voter decisions, although not as strong as the track record. In addition, using these two algorithms provides a comprehensive understanding of voter behavior in Jakarta. Based on these results, governor and deputy governor candidates should also focus on improving their track record and popularity to increase their chances of being elected.

Keywords: Governor Election, Special Region of Jakarta, Naive Bayes, Logistic Regression

References

Tim Detikcom, “Pilgub DKI 2024 Tanggal Berapa? Ini Daftar Tahapannya,” detik.com.

A. S. Fitriani, “JTAM (Jurnal Teori dan Aplikasi Matematika) Penerapan Data Mining Menggunakan Metode Klasifikasi Naïve Bayes untuk Memprediksi Partisipasi Pemilihan Gubernur,” vol. 3, no. 2, pp. 98–104, 2019, doi: 10.31764/jtam.v3i2.995.

M. G. Sadewo, A. Perdana Windarto, I. S. Damanik, S. Tunas, and B. Pematangsiantar, “Prosiding Seminar Nasional Riset Information Science (SENARIS) Algoritma Naïve Bayes Dalam Memprediksi Kepuasan Nasabah,” p. 318, 2019.

B. Purba and R. Syahputra, “Implementasi metode Naive Bayes Classifier pada Evaluasi Kepuasan Mahasiswa terhadap Pembelajaran Daring,” vol. 6, no. 1, 2021, doi: 10.30743/infotekjar.v6i1.4352.

M. I. K. K. and D. S. Hendriyana, “Analisis Perbandingan Algoritma Support Vector Machine, Naive Bayes, Dan Regresi Logistik Untuk Memprediksi Donor Darah,” Jurnal Teknologi Terpadu, vol. 8, no. 2, pp. 121–126, 2022.

Abd. C. Fauzan and K. Hikmah, “Implementasi Algoritma Naive Bayes Dalam Analisis Polarisasi Opini Masyarakat Terkait Vaksin Covid-19,” Rabit : Jurnal Teknologi dan Sistem Informasi Univrab, vol. 7, no. 2, pp. 122–128, Jul. 2022, doi: 10.36341/rabit.v7i2.2403.

I. Muslim, K. Karo, M. Farhan, M. Fudzee, S. Kasim, and A. A. Ramli, “International Journal On Informatics Visualization Karonese Sentiment Analysis: A New Dataset and Preliminary Result,” 2022. [Online]. Available: www.joiv.org/index.php/joiv

I. M. K. Karo, M. F. M. Fudzee, S. Kasim, and A. A. Ramli, “Sentiment Analysis in Karonese Tweet using Machine Learning,” Indonesian Journal of Electrical Engineering and Informatics, vol. 10, no. 1, pp. 219–231, Mar. 2022, doi: 10.52549/ijeei.v10i1.3565.

C. N. Nasution and Y. Widyaningsih, “Klasifikasi Pemilih dalam Pemilu 2019 di Indonesia Menggunakan Regresi Logistik Multinomial dan Chi-Square Automatic Decision Tree (CHAID),” Jurnal Statistika dan Aplikasinya, vol. 6, no. 2, 2022.

R. Prabowo, H. Sujaini, and T. Rismawan, “Analisis Sentimen Pengguna Twitter Terhadap Kasus COVID-19 di Indonesia Menggunakan Metode Regresi Logistik Multinomial,” Jurnal Sistem dan Teknologi Informasi (JustIN), vol. 11, no. 2, p. 366, Jul. 2023, doi: 10.26418/justin.v11i2.57449.

Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” Jurnal KomtekInfo, pp. 1–7, Jan. 2023, doi: 10.35134/komtekinfo.v10i1.330.

E. Novianto, A. Hermawan, and D. Avianto, “Klasifikasi Algoritma K-Nearest Neighbor, Naive Bayes, Decision Tree Untuk Prediksi Status Kelulusan Mahasiswa S1,” Rabit : Jurnal Teknologi dan Sistem Informasi Univrab, vol. 8, no. 2, pp. 146–154, Jul. 2023, doi: 10.36341/rabit.v8i2.3434.

F. D. Pratama, I. Zufria, and T. Triase, “Implementasi Data Mining Menggunakan Algoritma Naïve Bayes Untuk Klasifikasi Penerima Program Indonesia Pintar,” Rabit : Jurnal Teknologi dan Sistem Informasi Univrab, vol. 7, no. 1, pp. 77–84, Jan. 2022, doi: 10.36341/rabit.v7i1.2217.

M. Hasan, “Prediksi Tingkat Kelancaran Pembayaran Kredit Bank Menggunakan Algoritma Naive Bayes Berbasis Forward Selection,” ILKOM Jurnal Ilmiah, vol. 9, p. 317, 2017.

A. Pebdika, R. Herdiana, and D. Solihudin, “Klasifikasi Menggunakan Metode Naive Bayes Untuk Menentukan Calon Penerima PIP,” 2023.

Published
2024-07-08
How to Cite
[1]
Y. Khoiril Umat, D. Rusyda Nafsyi, D. Kusumaningsih, and L. Hakim, “ANALISIS FAKTOR YANG MEMPENGARUHI PEMILIHAN GUBERNUR DAERAH KHUSUS JAKARTA MENGGUNAKAN ALGORITMA NAIVE BAYES DAN REGRESI LOGISTIK”, rabit, vol. 9, no. 2, pp. 211-224, Jul. 2024.
Section
Articles
PDF (Bahasa Indonesia)
Abstract views: 174
downloads: 91