PENANGANAN MISSING VALUES DAN PREDIKSI DATA TIMBUNAN SAMPAH BERBASIS MACHINE LEARNING
HANDLING MISSING VALUES AND PREDICTION OF WASTE PILE DATA BASED ON MACHINE LEARNING
Abstract
The issue of increasing waste due to the growing population and human activities presents a serious challenge in waste management in Central Java. One of the main obstacles in waste prediction research is the prevalence of missing data, which can reduce the accuracy of predictive models. This study employs three methods to handle missing values: Mean Imputation, Interpolation, and KNN Imputer. Once the missing values are filled using these methods, the next step is to calculate the prediction values. The study utilizes three predictive models: Random Forest, Gradient Boosting, and KNN. The results indicate that with Mean Imputation, the Random Forest model shows the best performance with an RMSE of 0.349. When using Interpolation for missing values, the Gradient Boosting model becomes the best choice with an RMSE of 0.543. Meanwhile, with KNN Imputer, the Gradient Boosting model again performs the best with an RMSE of 0.188. Based on this research, the most effective approach is using KNN Imputer for handling missing values in conjunction with the Gradient Boosting model. This combination provides the lowest RMSE for similar datasets.
References
N. Trisnawati, Y. N. E. Putri, N. T. Rahma, E. M. Sari, and A. T. Yulinda, “Pelatihan Daur Ulang Sampah Botol Plastik Menjadi Celengan Di Desa Air Hitam Kabupaten Mukomuko,” J. Ilm. Mhs. Kuliah Kerja Nyata, vol. 2, no. 1, pp. 153–159, 2022, doi: 10.36085/jimakukerta.v2i1.2542.
F. Novitasari and W. Nurharjadmo, “Implementasi Strategi Dinas Lingkungan Hidup dalam Pengelolaan Sampah di Kabupaten Sukoharjo pada Masa Pandemi Covid-19 Febrianti Novitasari, Wahyu Nurharjadmo,” J. Mhs. Wacana Publik, vol. 3, no. 1, pp. 104–118, 2023.
Gunawansyah, R. H. Laluma, and A. Prasetya, “Prediksi Volume Dan Ritasi Pengelolaan Sampah,” J. Techno-Socio Ekon., vol. 15, no. 1, pp. 49–60, 2022.
C. W. Wardani, “Analisa Kelayakan Fasilitas Dan Sistem Pengelolaan Tempat Pembuangan Akhir (TPA) Benowo Surabaya,” Rekayasa Tek. Sipil, vol. 10, no. 2, pp. 1–11, 2022, [Online]. Available: https://ejournal.unesa.ac.id/index.php/rekayasa-teknik-sipil/article/view/48990
F. Yulian Pamuji, Ahmad Rofiqul Muslikh, Rizza Muhammad Arief, and Delviana Muti, “Komparasi Metode Mean dan KNN Imputation dalam Mengatasi Missing Value pada Dataset Kecil,” J. Inform. Polinema, vol. 10, no. 2, pp. 257–264, 2024, doi: 10.33795/jip.v10i2.5031.
M. I. Ananda, “Multivariate Forecasting Harga Daging Ayam dan Sapi Melibatkan Faktor Cuaca, Ekonomi, dan Kesehatan Menggunakan GRU Multivariate Forecasting of Chicken and Beef Prices Involving Weather, Economic, and Health Factors Using GRU,” J. Ilmu Komput. dan Argi-Informatika, vol. 10, no. 1, pp. 111–120, 2023, [Online]. Available: https://jurnal.ipb.ac.id/index.php/jika
S. Saadah and H. Salsabila, “Prediksi Harga Bitcoin Menggunakan Metode Random Forest,” J. Komput. Terap., vol. 7, no. 1, pp. 24–32, 2021, doi: 10.35143/jkt.v7i1.4618.
R. Risanti, “Analisis Model Prediksi Cuaca Menggunakan Support Vector Machine, Gradient Boosting, Random Forest, Dan Decision Tree,” vol. XII, pp. 119–128, 2024, doi: 10.21009/03.1201.fa18.
I. W. S, J. Triloka, and R. E. Badri, “Prediksi Potensi Penjualan Leopard Gecko Pada Snowy Gecko Farm Menggunakan Kajian Algoritma K-NN dan Naïve Bayes,” Semin. Nas. Has. Penelit. dan Pengabdi. Masy. 2023, vol. 1, no. Leopard Gecko, pp. 208–217, 2023.
D. Safitri, S. S. Hilabi, and F. Nurapriani, “Analisis Penggunaan Algoritma Klasifikasi Dalam Prediksi Kelulusan Menggunakan Orange Data Mining,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 8, no. 1, pp. 75–81, 2023, doi: 10.36341/rabit.v8i1.3009.
M. R. A. Prasetya, A. M. Priyatno, and Nurhaeni, “Penanganan Imputasi Missing Values pada Data Time Series dengan Menggunakan Metode Data Mining,” J. Inf. dan Teknol., vol. 5, no. 2, pp. 52–62, 2023, doi: 10.37034/jidt.v5i2.324.
M. Shofwan Khamid et al., “Prediksi Jumlah Sampah Kelurahan Menggunakan Neural Network Backpropagation,” J. Inf. Syst. Res., vol. 5, no. 2, pp. 713–721, 2024, doi: 10.47065/josh.v5i2.4825.
V. A. Simbolon, Tarisa, and H. Horiza, “Prediksi Tingkat Timbulan Sampah 5 Tahun Mendatang (2023-2027) di TPA Ganet Kota Tanjungpinang,” Sulolipu Media Komun. Sivitas Akad. dan Masy., vol. 23, no. 2, pp. 303–310, 2023, doi: 10.32382/sulo.v23i2.105.
M. Chaerul and T. P. Dewi, “Al-Ard: Jurnal Teknik Lingkungan Al-Ard: Jurnal Teknik Lingkungan Analisis Timbulan Sampah Pasar Tradisional (Studi Kasus: Pasar Ujungberung, Kota Bandung),” Al-Ard J. Tek. Lingkung., vol. 5, no. 2, pp. 98–106, 2020, [Online]. Available: http://jurnalsaintek.uinsby.ac.id/index.php/alard/index
R. R. Rerung, “Penerapan Data Mining dengan Memanfaatkan Metode Association Rule untuk Promosi Produk,” J. Teknol. Rekayasa, vol. 3, no. 1, p. 89, 2018, doi: 10.31544/jtera.v3.i1.2018.89-98.
N. Sunanto and G. Falah, “Penerapan Algoritma C4.5 Untuk Membuat Model Prediksi Pasien Yang Mengidap Penyakit Diabetes,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 7, no. 2, pp. 208–216, 2022, doi: 10.36341/rabit.v7i2.2435.
A. S. B. Karno, “Prediksi Data Time Series Saham Bank BRI Dengan Mesin Belajar LSTM (Long ShortTerm Memory),” J. Inform. Inf. Secur., vol. 1, no. 1, pp. 1–8, 2020, doi: 10.31599/jiforty.v1i1.133.
A. A. A. Purnamaswari, I. K. G. D. Putra, and I. M. S. Putra, “Komparasi Metode Neural Network Backpropagation dan Support Vector Machines dalam Prediksi Volume Sampah TPA Suwung,” JITTER J. Ilm. Teknol. dan Komput., vol. 3, no. 1, pp. 853–861, 2022, [Online]. Available: https://ojs.unud.ac.id/index.php/jitter/article/view/83024/43066
X. Xu, W. Chen, and Y. Sun, “Over-sampling algorithm for imbalanced data classification,” J. Syst. Eng. Electron., vol. 30, no. 6, pp. 1182–1191, 2019, doi: 10.21629/JSEE.2019.06.12.
Copyright (c) 2024 Rabit : Jurnal Teknologi dan Sistem Informasi Univrab
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice
The copyright of the received article shall be assigned to the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to published articles. Therefore, the author must submit a statement of the Copyright Transfer Agreement.*)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In line with the license, authors and any users (readers and other researchers) are allowed to share and adapt the material only for non-commercial purposes. In addition, the material must be given appropriate credit, provided with a link to the license, and indicated if changes were made. If authors remix, transform or build upon the material, authors must distribute their contributions under the same license as the original.
Please find the rights and licenses in RABIT : Jurnal Teknologi dan Sistem Informasi Univrab. By submitting the article/manuscript of the article, the author(s) accept this policy.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
2. Author’s Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
RABIT's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, RABIT permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and RABIT on distributing works in the journal.
4. Rights of Authors
Authors retain all their rights to the published works, such as (but not limited to) the following rights;
- Copyright and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in own future works, including lectures and books,
- The right to reproduce the article for own purposes,
- The right to self-archive the article,
- The right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal (RABIT : Jurnal Teknologi dan Sistem Informasi Univrab).
5. Co-Authorship
If the article was jointly prepared by other authors, any authors submitting the manuscript warrants that he/she has been authorized by all co-authors to be agreed on this copyright and license notice (agreement) on their behalf, and agrees to inform his/her co-authors of the terms of this policy. RABIT will not be held liable for anything that may arise due to the author(s) internal dispute. RABIT will only communicate with the corresponding author.
6. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by RABIT.
7. Miscellaneous
RABIT will publish the article (or have it published) in the journal if the article’s editorial process is successfully completed. RABIT's editors may modify the article to a style of punctuation, spelling, capitalization, referencing and usage that deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers as mentioned in point 3.