PENANGANAN MISSING VALUES DAN PREDIKSI DATA TIMBUNAN SAMPAH BERBASIS MACHINE LEARNING

HANDLING MISSING VALUES AND PREDICTION OF WASTE PILE DATA BASED ON MACHINE LEARNING

  • Anisa Widianti Universitas Mercu Buana Yogyakarta
  • Irfan Pratama Universitas Mercu Buana Yogyakarta

Abstract

The issue of increasing waste due to the growing population and human activities presents a serious challenge in waste management in Central Java. One of the main obstacles in waste prediction research is the prevalence of missing data, which can reduce the accuracy of predictive models. This study employs three methods to handle missing values: Mean Imputation, Interpolation, and KNN Imputer. Once the missing values are filled using these methods, the next step is to calculate the prediction values. The study utilizes three predictive models: Random Forest, Gradient Boosting, and KNN. The results indicate that with Mean Imputation, the Random Forest model shows the best performance with an RMSE of 0.349. When using Interpolation for missing values, the Gradient Boosting model becomes the best choice with an RMSE of 0.543. Meanwhile, with KNN Imputer, the Gradient Boosting model again performs the best with an RMSE of 0.188. Based on this research, the most effective approach is using KNN Imputer for handling missing values in conjunction with the Gradient Boosting model. This combination provides the lowest RMSE for similar datasets.

References

N. Trisnawati, Y. N. E. Putri, N. T. Rahma, E. M. Sari, and A. T. Yulinda, “Pelatihan Daur Ulang Sampah Botol Plastik Menjadi Celengan Di Desa Air Hitam Kabupaten Mukomuko,” J. Ilm. Mhs. Kuliah Kerja Nyata, vol. 2, no. 1, pp. 153–159, 2022, doi: 10.36085/jimakukerta.v2i1.2542.

F. Novitasari and W. Nurharjadmo, “Implementasi Strategi Dinas Lingkungan Hidup dalam Pengelolaan Sampah di Kabupaten Sukoharjo pada Masa Pandemi Covid-19 Febrianti Novitasari, Wahyu Nurharjadmo,” J. Mhs. Wacana Publik, vol. 3, no. 1, pp. 104–118, 2023.

Gunawansyah, R. H. Laluma, and A. Prasetya, “Prediksi Volume Dan Ritasi Pengelolaan Sampah,” J. Techno-Socio Ekon., vol. 15, no. 1, pp. 49–60, 2022.

C. W. Wardani, “Analisa Kelayakan Fasilitas Dan Sistem Pengelolaan Tempat Pembuangan Akhir (TPA) Benowo Surabaya,” Rekayasa Tek. Sipil, vol. 10, no. 2, pp. 1–11, 2022, [Online]. Available: https://ejournal.unesa.ac.id/index.php/rekayasa-teknik-sipil/article/view/48990

F. Yulian Pamuji, Ahmad Rofiqul Muslikh, Rizza Muhammad Arief, and Delviana Muti, “Komparasi Metode Mean dan KNN Imputation dalam Mengatasi Missing Value pada Dataset Kecil,” J. Inform. Polinema, vol. 10, no. 2, pp. 257–264, 2024, doi: 10.33795/jip.v10i2.5031.

M. I. Ananda, “Multivariate Forecasting Harga Daging Ayam dan Sapi Melibatkan Faktor Cuaca, Ekonomi, dan Kesehatan Menggunakan GRU Multivariate Forecasting of Chicken and Beef Prices Involving Weather, Economic, and Health Factors Using GRU,” J. Ilmu Komput. dan Argi-Informatika, vol. 10, no. 1, pp. 111–120, 2023, [Online]. Available: https://jurnal.ipb.ac.id/index.php/jika

S. Saadah and H. Salsabila, “Prediksi Harga Bitcoin Menggunakan Metode Random Forest,” J. Komput. Terap., vol. 7, no. 1, pp. 24–32, 2021, doi: 10.35143/jkt.v7i1.4618.

R. Risanti, “Analisis Model Prediksi Cuaca Menggunakan Support Vector Machine, Gradient Boosting, Random Forest, Dan Decision Tree,” vol. XII, pp. 119–128, 2024, doi: 10.21009/03.1201.fa18.

I. W. S, J. Triloka, and R. E. Badri, “Prediksi Potensi Penjualan Leopard Gecko Pada Snowy Gecko Farm Menggunakan Kajian Algoritma K-NN dan Naïve Bayes,” Semin. Nas. Has. Penelit. dan Pengabdi. Masy. 2023, vol. 1, no. Leopard Gecko, pp. 208–217, 2023.

D. Safitri, S. S. Hilabi, and F. Nurapriani, “Analisis Penggunaan Algoritma Klasifikasi Dalam Prediksi Kelulusan Menggunakan Orange Data Mining,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 8, no. 1, pp. 75–81, 2023, doi: 10.36341/rabit.v8i1.3009.

M. R. A. Prasetya, A. M. Priyatno, and Nurhaeni, “Penanganan Imputasi Missing Values pada Data Time Series dengan Menggunakan Metode Data Mining,” J. Inf. dan Teknol., vol. 5, no. 2, pp. 52–62, 2023, doi: 10.37034/jidt.v5i2.324.

M. Shofwan Khamid et al., “Prediksi Jumlah Sampah Kelurahan Menggunakan Neural Network Backpropagation,” J. Inf. Syst. Res., vol. 5, no. 2, pp. 713–721, 2024, doi: 10.47065/josh.v5i2.4825.

V. A. Simbolon, Tarisa, and H. Horiza, “Prediksi Tingkat Timbulan Sampah 5 Tahun Mendatang (2023-2027) di TPA Ganet Kota Tanjungpinang,” Sulolipu Media Komun. Sivitas Akad. dan Masy., vol. 23, no. 2, pp. 303–310, 2023, doi: 10.32382/sulo.v23i2.105.

M. Chaerul and T. P. Dewi, “Al-Ard: Jurnal Teknik Lingkungan Al-Ard: Jurnal Teknik Lingkungan Analisis Timbulan Sampah Pasar Tradisional (Studi Kasus: Pasar Ujungberung, Kota Bandung),” Al-Ard J. Tek. Lingkung., vol. 5, no. 2, pp. 98–106, 2020, [Online]. Available: http://jurnalsaintek.uinsby.ac.id/index.php/alard/index

R. R. Rerung, “Penerapan Data Mining dengan Memanfaatkan Metode Association Rule untuk Promosi Produk,” J. Teknol. Rekayasa, vol. 3, no. 1, p. 89, 2018, doi: 10.31544/jtera.v3.i1.2018.89-98.

N. Sunanto and G. Falah, “Penerapan Algoritma C4.5 Untuk Membuat Model Prediksi Pasien Yang Mengidap Penyakit Diabetes,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 7, no. 2, pp. 208–216, 2022, doi: 10.36341/rabit.v7i2.2435.

A. S. B. Karno, “Prediksi Data Time Series Saham Bank BRI Dengan Mesin Belajar LSTM (Long ShortTerm Memory),” J. Inform. Inf. Secur., vol. 1, no. 1, pp. 1–8, 2020, doi: 10.31599/jiforty.v1i1.133.

A. A. A. Purnamaswari, I. K. G. D. Putra, and I. M. S. Putra, “Komparasi Metode Neural Network Backpropagation dan Support Vector Machines dalam Prediksi Volume Sampah TPA Suwung,” JITTER J. Ilm. Teknol. dan Komput., vol. 3, no. 1, pp. 853–861, 2022, [Online]. Available: https://ojs.unud.ac.id/index.php/jitter/article/view/83024/43066

X. Xu, W. Chen, and Y. Sun, “Over-sampling algorithm for imbalanced data classification,” J. Syst. Eng. Electron., vol. 30, no. 6, pp. 1182–1191, 2019, doi: 10.21629/JSEE.2019.06.12.

Published
2024-07-08
How to Cite
[1]
A. Widianti and I. Pratama, “PENANGANAN MISSING VALUES DAN PREDIKSI DATA TIMBUNAN SAMPAH BERBASIS MACHINE LEARNING”, rabit, vol. 9, no. 2, pp. 242-251, Jul. 2024.
Section
Articles
PDF (Bahasa Indonesia)
Abstract views: 239
downloads: 188