ANALISIS SENTIMEN TERHADAP PEMUTUSAN HUBUNGAN KERJA DI INDONESIA : KOMPARASI INDOBERT DENGAN SVM, RANDOM FOREST, DAN DECISION TREE DENGAN OPTIMASI TF - IDF
DOI:
https://doi.org/10.36341/rabit.v10i2.6364Keywords:
PHK, Analisis Sentimen, Twitter, SVM, Random Forest, Decision Tree, TF-IDFAbstract
Employment termination (PHK) has become a crucial issue widely discussed on social media platforms like Twitter due to its social and economic impacts. This study aims to analyze public sentiment toward PHK in Indonesia using four classification methods: IndoBERT, Support Vector Machine (SVM), Random Forest, and Decision Tree. The data were collected via Twitter crawling using the keyword "PHK” in Bahasa Indonesia during the period from January to May 2025, resulting in 36,507 tweets. The data underwent preprocessing steps including case folding, cleaning, tokenization, normalization, stopword removal, and stemming. Text features were transformed into numerical form using the TF-IDF for classical models and IndoBERT tokenizer for the transformer-based model. Sentiments were classified into positive, negative, and neutral categories. Model performance was evaluated using a Confusion Matrix with an 80% training and 20% testing data split. Results show that the IndoBERT achieved the highest accuracy at 89,6%, SVM algorithm achieved accuary 88%, precision 90%, recall 95%, F1-score 92%, followed by Random Forest at 78.04%, and Decision Tree at 70.40%. Negative sentiment dominated with 21,790 tweets, reflecting significant public concern over PHK policies. This study concludes that SVM with the TF-IDF approach is the most effective model for real-time public sentiment classification. The limitation of this research lies in the data source, which is exclusively from Twitter and limited to a specific time frame, thus not representing the overall public opinin comprehensively.
Downloads
References
R. Solihah, A. Alamginto, and O. T. O. Sunggu, “Implikasi Sosial dan Ekonomi dari PHK Massal,” JISPENDIORA J. Ilmu Sos. Pendidik. Dan Hum., vol. 2, no. 3, pp. 178–192, Nov. 2023, doi: 10.56910/jispendiora.v2i3.985.
A. Supian, B. Tri Revaldo, N. Marhadi, and L. Efrizoni, “Acuan Supian Perbandingan Kinerja Naïve Bayes dan SVM pada Analisis Sentimen Twitter Ibukota Nusantara.” [Online]. Available: https://github.com/syenirasheila/Sentiment-Analysis-IKN-
R. Merdiansah and A. Ali Ridha, “Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan IndoBERT,” J. Ilmu Komput. dan Sist. Inf. (JIKOMSI, vol. 7, no. 1, pp. 221–228, 2024.
Sabrina Amanda Salsabila, Bayu Priyatna, Agustia Hananto, and Tukino, “Komparasi Kinerja Model Naive Bayes, SVM, dan BERT dalam Klasifikasi Sentimen Ulasan Pada Aplikasi YUMMY,” STORAGE J. Ilm. Tek. dan Ilmu Komput., vol. 4, no. 2, pp. 42–47, 2025, doi: 10.55123/storage.v4i2.5120.
F. F. Mailoa, “Analisis sentimen data twitter menggunakan metode text mining tentang masalah obesitas di indonesia,” J. Inf. Syst. Public Heal., vol. 6, no. 1, p. 44, 2021, doi: 10.22146/jisph.44455.
M. Amiruddin Saddam, E. D. Kurniawan, F. Teknologi Informasi, U. Budi Luhur, and J. Ciledug Raya, “Analisis Sentimen Fenomena PHK Massal Menggunakan Naive Bayes dan Support Vector Machine,” vol. 8, no. 3, 2023.
M. F. Asshiddiqi and K. M. Lhaksmana, “Perbandingan Metode Decision Tree dan Support Vector Machine untuk Analisis Sentimen pada Instagram Mengenai Kinerja PSSI,” 2023.
A. N. Syafia, M. F. Hidayattullah, and W. Suteddy, “Studi Komparasi Algoritma SVM Dan Random Forest Pada Analisis Sentimen Komentar Youtube BTS,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 207–212, 2023, doi: 10.30591/jpit.v8i3.5064.
I. Septiana and D. Alita, “Perbandingan Random Forest dan SVM dalam Analisis Sentimen Quick Count Pemilu 2024,” J. Inform. J. Pengemb. IT, vol. 9, no. 3, pp. 224–233, Dec. 2024, doi: 10.30591/jpit.v9i3.6640.
M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” J. Inform., vol. 6, no. 2, pp. 226–235, 2019, doi: 10.31311/ji.v6i2.5129.
A. Agustin, S. Andrean, S. Susanti, R. Rahmiati, and H. Hamdani, “Review Aplikasi Kredivo Menggunakan Analisis Sentimen Dengan Algoritma Support Vector Machine,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 9, no. 1, pp. 39–49, Dec. 2023, doi: 10.36341/rabit.v9i1.4107.
W. Wiyanto and Z. Setyaningsih, “Sentiment Analysis Pemutusan Hubungan Kerja Akibat Pandemi Covid-19 Menggunakan Algoritma NaïveBayes Dan PSO,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 10, no. 3, pp. 426–431, Dec. 2021, doi: 10.32736/sisfokom.v10i3.1299.
P. Kumala Sari and R. Randy Suryono, “Komparasi Algoritma Support Vector Machine Dan Random Forest Untuk Analisis Sentimen Metaverse,” 2024.
S. Mujilahwati, “Analisis Sentimen Pengguna Aplikasi Chatgpt Berdasarkan Rating Menggunakan Metode Lexicon,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 9, no. 1, pp. 131–137, Dec. 2023, doi: 10.36341/rabit.v9i1.3845.
C. H. Yutika, A. Adiwijaya, and S. Al Faraby, “Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 422, 2021, doi: 10.30865/mib.v5i2.2845.
D. E. Cahyani and I. Patasik, “Performance comparison of tf-idf and word2vec models for emotion text classification,” Bull. Electr. Eng. Informatics, vol. 10, no. 5, pp. 2780–2788, 2021, doi: 10.11591/eei.v10i5.3157.
H. Bichri, A. Chergui, and M. Hain, “Investigating the Impact of Train / Test Split Ratio on the Performance of Pre-Trained Models with Custom Datasets,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 2, pp. 331–339, 2024, doi: 10.14569/IJACSA.2024.0150235.
D. Lusiyanti, S. Musdalifah, A. Sahari, and I. Al Fajri, “Evaluasi Kinerja Algoritma Machine learning pada Dataset Skala Besar,” MathVision J. Mat., vol. 7, no. 1, pp. 84–92, 2025, doi: 10.55719/mv.v7i1.1661.
M. N. Muttaqin and I. Kharisudin, “Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor,” UNNES J. Math., vol. 10, no. 2, pp. 22–27, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm
C. G. Indrayanto, D. E. Ratnawati, and B. Rahayudi, “Analisis Sentimen Data Ulasan Pengguna Aplikasi MyPertamina di Indonesia pada Google Play Store menggunakan Metode Random Forest,” 2023. [Online]. Available: http://j-ptiik.ub.ac.id
Y. A. Singgalen, “Penerapan Metode CRISP-DM dalam Klasifikasi Data Ulasan Pengunjung Destinasi Danau Toba Menggunakan Algoritma Naïve Bayes Classifier (NBC) dan Decision Tree (DT),” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 3, p. 1551, Jul. 2023, doi: 10.30865/mib.v7i3.6461.
L. A. Pramesti and N. Pratiwi, “Analisis Sentimen Twitter Terhadap Program MBKM Menggunakan Decision Tree dan Support Vector Machine,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1145–1154, Jul. 2023, doi: 10.47065/josh.v4i4.3807.
G. Hakim, T. N. Fatyanosa, and A. W. Widodo, “Analisis Sentimen Masyarakat terhadap Kereta Cepat Whoosh pada Platform X menggunakan IndoBERT,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 10, pp. 1–10, 2024, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/14291
A. C. Fauzan and K. Hikmah, “Implementasi Algoritma Naive Bayes Dalam Analisis Polarisasi Opini Masyarakat Terkait Vaksin Covid-19,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 7, no. 2, pp. 122–128, 2022, doi: 10.36341/rabit.v7i2.2403.
H. Tuhuteru, “Analisis Sentimen Masyarakat Terhadap Pembatasan Sosial Berksala Besar Menggunakan Algoritma Support Vector Machine,” Inf. Syst. Dev., vol. 5, no. 2, pp. 7–13, 2020.
Ihsan Zulfahmi, “Analisis Sentimen Aplikasi PLN Mobile Menggunakan Metode Decission Tree,” J. Penelit. Rumpun Ilmu Tek., vol. 3, no. 1, pp. 11–21, 2023, doi: 10.55606/juprit.v3i1.3096.
M. N. Hidayat and R. Pramudita, “Analisis Sentimen Terhadap Pembelajaran Secara Daring Pasca Pandemi Covid-19 Menggunakan Metode IndoBERT,” Inf. Manag. Educ. Prof. J. Inf. Manag., vol. 8, no. 2, p. 161, 2024, doi: 10.51211/imbi.v8i2.2719.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rabit : Jurnal Teknologi dan Sistem Informasi Univrab

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice
The copyright of the received article shall be assigned to the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to published articles. Therefore, the author must submit a statement of the Copyright Transfer Agreement.*)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In line with the license, authors and any users (readers and other researchers) are allowed to share and adapt the material only for non-commercial purposes. In addition, the material must be given appropriate credit, provided with a link to the license, and indicated if changes were made. If authors remix, transform or build upon the material, authors must distribute their contributions under the same license as the original.
Please find the rights and licenses in RABIT : Jurnal Teknologi dan Sistem Informasi Univrab. By submitting the article/manuscript of the article, the author(s) accept this policy.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
2. Author’s Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
RABIT's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, RABIT permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and RABIT on distributing works in the journal.
4. Rights of Authors
Authors retain all their rights to the published works, such as (but not limited to) the following rights;
- Copyright and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in own future works, including lectures and books,
- The right to reproduce the article for own purposes,
- The right to self-archive the article,
- The right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal (RABIT : Jurnal Teknologi dan Sistem Informasi Univrab).
5. Co-Authorship
If the article was jointly prepared by other authors, any authors submitting the manuscript warrants that he/she has been authorized by all co-authors to be agreed on this copyright and license notice (agreement) on their behalf, and agrees to inform his/her co-authors of the terms of this policy. RABIT will not be held liable for anything that may arise due to the author(s) internal dispute. RABIT will only communicate with the corresponding author.
6. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by RABIT.
7. Miscellaneous
RABIT will publish the article (or have it published) in the journal if the article’s editorial process is successfully completed. RABIT's editors may modify the article to a style of punctuation, spelling, capitalization, referencing and usage that deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers as mentioned in point 3.



