ANALISIS SENTIMEN TERHADAP PEMUTUSAN HUBUNGAN KERJA DI INDONESIA : KOMPARASI INDOBERT DENGAN SVM, RANDOM FOREST, DAN DECISION TREE DENGAN OPTIMASI TF - IDF

Authors

  • Nida Nur Aini Aryanti Universitas Mercu Buana Yogyakarta
  • Ozzi Suria

DOI:

https://doi.org/10.36341/rabit.v10i2.6364

Keywords:

PHK, Analisis Sentimen, Twitter, SVM, Random Forest, Decision Tree, TF-IDF

Abstract

Employment termination (PHK) has become a crucial issue widely discussed on social media platforms like Twitter due to its social and economic impacts. This study aims to analyze public sentiment toward PHK in Indonesia using four classification methods: IndoBERT, Support Vector Machine (SVM), Random Forest, and Decision Tree. The data were collected via Twitter crawling using the keyword "PHK” in Bahasa Indonesia during the period from January to May 2025, resulting in 36,507 tweets. The data underwent preprocessing steps including case folding, cleaning, tokenization, normalization, stopword removal, and stemming. Text features were transformed into numerical form using the TF-IDF for classical models and IndoBERT tokenizer for the transformer-based model. Sentiments were classified into positive, negative, and neutral categories. Model performance was evaluated using a Confusion Matrix with an 80% training and 20% testing data split. Results show that the IndoBERT achieved the highest accuracy at 89,6%, SVM algorithm achieved accuary 88%, precision 90%, recall 95%, F1-score 92%, followed by Random Forest at 78.04%, and Decision Tree at 70.40%. Negative sentiment dominated with 21,790 tweets, reflecting significant public concern over PHK policies. This study concludes that SVM with the TF-IDF approach is the most effective model for real-time public sentiment classification. The limitation of this research lies in the data source, which is exclusively from Twitter and limited to a specific time frame, thus not representing the overall public opinin comprehensively.

Downloads

Download data is not yet available.

References

R. Solihah, A. Alamginto, and O. T. O. Sunggu, “Implikasi Sosial dan Ekonomi dari PHK Massal,” JISPENDIORA J. Ilmu Sos. Pendidik. Dan Hum., vol. 2, no. 3, pp. 178–192, Nov. 2023, doi: 10.56910/jispendiora.v2i3.985.

A. Supian, B. Tri Revaldo, N. Marhadi, and L. Efrizoni, “Acuan Supian Perbandingan Kinerja Naïve Bayes dan SVM pada Analisis Sentimen Twitter Ibukota Nusantara.” [Online]. Available: https://github.com/syenirasheila/Sentiment-Analysis-IKN-

R. Merdiansah and A. Ali Ridha, “Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan IndoBERT,” J. Ilmu Komput. dan Sist. Inf. (JIKOMSI, vol. 7, no. 1, pp. 221–228, 2024.

Sabrina Amanda Salsabila, Bayu Priyatna, Agustia Hananto, and Tukino, “Komparasi Kinerja Model Naive Bayes, SVM, dan BERT dalam Klasifikasi Sentimen Ulasan Pada Aplikasi YUMMY,” STORAGE J. Ilm. Tek. dan Ilmu Komput., vol. 4, no. 2, pp. 42–47, 2025, doi: 10.55123/storage.v4i2.5120.

F. F. Mailoa, “Analisis sentimen data twitter menggunakan metode text mining tentang masalah obesitas di indonesia,” J. Inf. Syst. Public Heal., vol. 6, no. 1, p. 44, 2021, doi: 10.22146/jisph.44455.

M. Amiruddin Saddam, E. D. Kurniawan, F. Teknologi Informasi, U. Budi Luhur, and J. Ciledug Raya, “Analisis Sentimen Fenomena PHK Massal Menggunakan Naive Bayes dan Support Vector Machine,” vol. 8, no. 3, 2023.

M. F. Asshiddiqi and K. M. Lhaksmana, “Perbandingan Metode Decision Tree dan Support Vector Machine untuk Analisis Sentimen pada Instagram Mengenai Kinerja PSSI,” 2023.

A. N. Syafia, M. F. Hidayattullah, and W. Suteddy, “Studi Komparasi Algoritma SVM Dan Random Forest Pada Analisis Sentimen Komentar Youtube BTS,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 207–212, 2023, doi: 10.30591/jpit.v8i3.5064.

I. Septiana and D. Alita, “Perbandingan Random Forest dan SVM dalam Analisis Sentimen Quick Count Pemilu 2024,” J. Inform. J. Pengemb. IT, vol. 9, no. 3, pp. 224–233, Dec. 2024, doi: 10.30591/jpit.v9i3.6640.

M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” J. Inform., vol. 6, no. 2, pp. 226–235, 2019, doi: 10.31311/ji.v6i2.5129.

A. Agustin, S. Andrean, S. Susanti, R. Rahmiati, and H. Hamdani, “Review Aplikasi Kredivo Menggunakan Analisis Sentimen Dengan Algoritma Support Vector Machine,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 9, no. 1, pp. 39–49, Dec. 2023, doi: 10.36341/rabit.v9i1.4107.

W. Wiyanto and Z. Setyaningsih, “Sentiment Analysis Pemutusan Hubungan Kerja Akibat Pandemi Covid-19 Menggunakan Algoritma NaïveBayes Dan PSO,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 10, no. 3, pp. 426–431, Dec. 2021, doi: 10.32736/sisfokom.v10i3.1299.

P. Kumala Sari and R. Randy Suryono, “Komparasi Algoritma Support Vector Machine Dan Random Forest Untuk Analisis Sentimen Metaverse,” 2024.

S. Mujilahwati, “Analisis Sentimen Pengguna Aplikasi Chatgpt Berdasarkan Rating Menggunakan Metode Lexicon,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 9, no. 1, pp. 131–137, Dec. 2023, doi: 10.36341/rabit.v9i1.3845.

C. H. Yutika, A. Adiwijaya, and S. Al Faraby, “Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 422, 2021, doi: 10.30865/mib.v5i2.2845.

D. E. Cahyani and I. Patasik, “Performance comparison of tf-idf and word2vec models for emotion text classification,” Bull. Electr. Eng. Informatics, vol. 10, no. 5, pp. 2780–2788, 2021, doi: 10.11591/eei.v10i5.3157.

H. Bichri, A. Chergui, and M. Hain, “Investigating the Impact of Train / Test Split Ratio on the Performance of Pre-Trained Models with Custom Datasets,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 2, pp. 331–339, 2024, doi: 10.14569/IJACSA.2024.0150235.

D. Lusiyanti, S. Musdalifah, A. Sahari, and I. Al Fajri, “Evaluasi Kinerja Algoritma Machine learning pada Dataset Skala Besar,” MathVision J. Mat., vol. 7, no. 1, pp. 84–92, 2025, doi: 10.55719/mv.v7i1.1661.

M. N. Muttaqin and I. Kharisudin, “Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor,” UNNES J. Math., vol. 10, no. 2, pp. 22–27, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm

C. G. Indrayanto, D. E. Ratnawati, and B. Rahayudi, “Analisis Sentimen Data Ulasan Pengguna Aplikasi MyPertamina di Indonesia pada Google Play Store menggunakan Metode Random Forest,” 2023. [Online]. Available: http://j-ptiik.ub.ac.id

Y. A. Singgalen, “Penerapan Metode CRISP-DM dalam Klasifikasi Data Ulasan Pengunjung Destinasi Danau Toba Menggunakan Algoritma Naïve Bayes Classifier (NBC) dan Decision Tree (DT),” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 3, p. 1551, Jul. 2023, doi: 10.30865/mib.v7i3.6461.

L. A. Pramesti and N. Pratiwi, “Analisis Sentimen Twitter Terhadap Program MBKM Menggunakan Decision Tree dan Support Vector Machine,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1145–1154, Jul. 2023, doi: 10.47065/josh.v4i4.3807.

G. Hakim, T. N. Fatyanosa, and A. W. Widodo, “Analisis Sentimen Masyarakat terhadap Kereta Cepat Whoosh pada Platform X menggunakan IndoBERT,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 10, pp. 1–10, 2024, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/14291

A. C. Fauzan and K. Hikmah, “Implementasi Algoritma Naive Bayes Dalam Analisis Polarisasi Opini Masyarakat Terkait Vaksin Covid-19,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 7, no. 2, pp. 122–128, 2022, doi: 10.36341/rabit.v7i2.2403.

H. Tuhuteru, “Analisis Sentimen Masyarakat Terhadap Pembatasan Sosial Berksala Besar Menggunakan Algoritma Support Vector Machine,” Inf. Syst. Dev., vol. 5, no. 2, pp. 7–13, 2020.

Ihsan Zulfahmi, “Analisis Sentimen Aplikasi PLN Mobile Menggunakan Metode Decission Tree,” J. Penelit. Rumpun Ilmu Tek., vol. 3, no. 1, pp. 11–21, 2023, doi: 10.55606/juprit.v3i1.3096.

M. N. Hidayat and R. Pramudita, “Analisis Sentimen Terhadap Pembelajaran Secara Daring Pasca Pandemi Covid-19 Menggunakan Metode IndoBERT,” Inf. Manag. Educ. Prof. J. Inf. Manag., vol. 8, no. 2, p. 161, 2024, doi: 10.51211/imbi.v8i2.2719.

Published

2025-07-18

How to Cite

[1]
Nida Nur Aini Aryanti and Ozzi Suria, “ANALISIS SENTIMEN TERHADAP PEMUTUSAN HUBUNGAN KERJA DI INDONESIA : KOMPARASI INDOBERT DENGAN SVM, RANDOM FOREST, DAN DECISION TREE DENGAN OPTIMASI TF - IDF”, rabit, vol. 10, no. 2, pp. 1158–1176, Jul. 2025.

Issue

Section

Articles

Similar Articles

> >> 

You may also start an advanced similarity search for this article.