PEMANFAATAN STFT DAN CNN DALAM PENGOLAHAN DATA SUARA UNTUK MENGKLASIFIKASIKAN SUARA BATUK

  • Indri Nurfiani Teknik Informatika UIN SGD
  • Jumadi Jumadi Universitas Islam Negeri Sunan Gunung Djati
  • Muhammad Deden Firdaus Universitas Islam Negeri Sunan Gunung Djati

Abstract

This research aims to develop an automatic cough sound evaluation system to improve the accuracy of respiratory disease diagnosis. In this study, the Short-Time Fourier Transform (STFT) and Convolutional Neural Network (CNN) methods were used to classify cough sounds into dry and wet coughs. The Naïve Bayes model was then used to identify respiratory diseases based on the cough classification results. Testing was conducted using the available cough sound dataset, resulting in a cough classification accuracy of 82% and a respiratory disease identification accuracy using Naïve Bayes of 71.43%. The evaluation results indicate that the developed system can accurately classify cough types and identify diseases. This system has the potential to enhance the prevention and management of respiratory diseases in resource-limited areas and can be a significant tool in medical practice for faster and more accurate diagnoses. Furthermore, this research opens opportunities for further development in disease detection and diagnosis technology through sound analysis, providing wide-ranging benefits for society and the healthcare sector.

Keywords: Cough sound, STFT, CNN, Naive Bayes, respiratory diseases

References

R. V Sharan, H. Xiong, and S. Berkovsky, “Detecting Cough Recordings in Crowdsourced Data Using CNN-RNN,” in 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2022, pp. 1–4. doi: 10.1109/BHI56158.2022.9926896.

K. S. Alqudaihi et al., “Cough Sound Detection and Diagnosis Using Artificial Intelligence Techniques: Challenges and Opportunities,” IEEE Access, vol. 9, pp. 102327–102344, 2021, doi: 10.1109/ACCESS.2021.3097559.

Ikatan Dokter Anak Indonesia 2017 Rekomendasi Diagnosis dan Tata Laksana Batuk pada Anak “Dedicated to the Health of All Indonesian Children.”

O. Zuliani, A. Farida Ulfa, S. Muniroh, A. Ghofar, W. Banu Ukhrowi, and F. Ilmu Kesehatan Unipdu Jombang, “Pencegahan Tb Paru Dengan Batuk Efektif Dan Etika Batuk,” Jurnal Pengabdian Kepada Masyarakat, vol. 2, no. 2, 2022, [Online]. Available: http://bajangjournal.com/index.php/J-ABDI

Dr. Irwan SKM.M.Kes, Irwan-Buku-Epidemiologi-Penyakit-Menular. CV. Absolute Media, 2017.

R. Rusnedy and W. K. Muhtadi, “Sosialisasi Etika Batuk dan Bersin yang Benar dan Pemanfaatan Herbal untuk Pereda Batuk,” Amalee: Indonesian Journal of Community Research and Engagement, vol. 3, no. 1, pp. 139–146, Apr. 2022, doi: 10.37680/amalee.v3i1.1292.

A. Riyanti and R. Emelia, “Analisis Tingkat Pengetahuan Swamedikasi Obat Batuk pada Pasien ISPA di Apotek Siaga-24 Cikampek,” Jurnal Health Sains, vol. 2, no. 11, pp. 1392–1407, Nov. 2021, doi: 10.46799/jhs.v2i11.327.

Y. B. Marhenta, K. E. Seran, S. Elsamba, E. Y. Prasetyo, and W. Admaja, “Risiko Penggunaan ACEi Terhadap Kejadian Batuk Kering Pada Pasien Hipertensi Di Rumah Sakitaura Syifa Kediri,” Journal of Herbal, Clinical and Pharmaceutical Science (HERCLIPS), 2023, [Online]. Available: https://api.semanticscholar.org/CorpusID:259942098

2019 4th International Conference on Information Systems and Computer Networks (ISCON). IEEE.

J. Laguarta, F. Hueto, and B. Subirana, “COVID-19 Artificial Intelligence Diagnosis Using only Cough Recordings,” IEEE Open J Eng Med Biol, vol. 1, pp. 275–281, 2020, doi: 10.1109/OJEMB.2020.3026928.

R. V. Sharan, “Cough sound detection from raw waveform using SincNet and bidirectional GRU,” Biomed Signal Process Control, vol. 82, Apr. 2023, doi: 10.1016/j.bspc.2023.104580.

S. Huq, P. Xi, R. Goubran, J. J. Valdés, F. Knoefel, and J. R. Green, “Data Augmentation using Reverb and Noise in Deep Learning Implementation of Cough Classification,” in 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2023, pp. 1–6. doi: 10.1109/MeMeA57477.2023.10171862.

National Science Foundation (U.S.) and Institute of Electrical and Electronics Engineers, 2019 IEEE International Conference on Healthcare Informatics (ICHI) : 10-13 June 2019, Xi’an, China.

M. Saleh and M. ÇEVİK, “Diagnosis of respiratory diseases for children using machine learning,” in 2022 International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2022, pp. 369–374. doi: 10.1109/ISMSIT56059.2022.9932662.

Md. M. Ahasan et al., “Classification of Respiratory Diseases and COVID-19 from Respiratory and Cough Sounds,” in 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), 2022, pp. 707–714.

doi:10.1109/3ICT56508.2022.9990866.

Published
2024-07-08
How to Cite
[1]
I. Nurfiani, J. Jumadi, and M. Deden Firdaus, “PEMANFAATAN STFT DAN CNN DALAM PENGOLAHAN DATA SUARA UNTUK MENGKLASIFIKASIKAN SUARA BATUK”, rabit, vol. 9, no. 2, pp. 184-190, Jul. 2024.
Section
Articles
PDF (Bahasa Indonesia)
Abstract views: 143
downloads: 82