IMPLEMENTASI CONVOLUTIONAL NEURAL NETWORK DENGAN PRE-TRAINED MODEL MOBILENETV2 UNTUK DETEKSI KOLESTEROL

  • Indah Sri Lestari UIN Sunan Gunung Djati Bandung
  • Jumadi Jumadi UIN Sunan Gunung Djati Bandung
  • Nur Lukman UIN Sunan Gunung Djati Bandung

Abstract

One of the main risks for heart disease and stroke is cholesterol. Cholesterol is a type of fat produced primarily by the liver and absorbed in small amounts from food. The ideal cholesterol level in the human body should be less than 200 mg/dl. One way to check cholesterol levels is through a blood sugar test that requires the patient to fast for 10 to 12 hours. Given the dangers posed by high cholesterol levels, there is a need for an early, practical screening method to detect high cholesterol levels in the human body. Iridology is an analysis of the iris of the eye to detect health conditions and show the relationship between iris patterns and cholesterol levels. The iris has its own uniqueness because it can record the condition of all organs, body structures, and psychological states. Therefore, iridology can be an alternative medical analysis. This study proposes the use of a convolutional neural network algorithm using a pre-trained MobileNetV2 model. The iris image dataset used consists of 200 images classified into two classes: normal eye images and cholesterol eye images. The results of the study show that the proposed model can achieve an accuracy of 95%. These results indicate that this model has great potential as a practical and cost-effective tool for detecting cholesterol. Further research is needed with larger datasets to improve accuracy and validity.

Author Biographies

Indah Sri Lestari, UIN Sunan Gunung Djati Bandung

Teknik Informatika

Jumadi Jumadi, UIN Sunan Gunung Djati Bandung

Teknik Informatika

Nur Lukman, UIN Sunan Gunung Djati Bandung

Teknik Informatika

Keywords: Cholesterol, Iridology, Convolutional Neural Network, Transfer Learning, MobileNetV2

References

“Penyakit Jantung Penyebab Utama Kematian, Kemenkes Perkuat Layanan Primer – Sehat Negeriku.” Accessed: Dec. 04, 2023. [Online]. Available: Https://Sehatnegeriku.Kemkes.Go.Id/Baca/Rilis-Media/20220929/0541166/Penyakit-Jantung-Penyebab-Utama-Kematian-Kemenkes-Perkuat-Layanan-Primer/

T. Kocejko, J. Ruminski, M. Mazur-Milecka, M. Romanowska-Kocejko, K. Chlebus, And K. H. Jo, “Using Convolutional Neural Networks For Corneal Arcus Detection Towards Familial Hypercholesterolemia Screening,” Journal Of King Saud University - Computer And Information Sciences, Vol. 34, No. 9, Pp. 7225–7235, Oct. 2022, Doi: 10.1016/J.Jksuci.2021.09.001.

S. N. Andana, L. Novamizanti, And I. N. Apraz Ramatryana, “Measurement Of Cholesterol Conditions Of Eye Image Using Fuzzy Local Binary Pattern (Flbp) And Linear Regression,” Proceedings - 2019 Ieee International Conference On Signals And Systems, Icsigsys 2019, Pp. 79–84, Jul. 2019, Doi: 10.1109/Icsigsys.2019.8811071.

I. Gusti Ayu Sri Ekayanti, “Analisis Kadar Kolesterol Total Dalam Darah Pasien Dengan Diagnosis Penyakit Kardiovaskuler,” International Journal Of Applied Chemistry Research |, Vol. 1, No. 1, Pp. 2541–7207, 2019, Doi: 10.23887/Ijacr-Undiksha.

“Banyak Orang Indonesia Tak Pernah Cek Darah Padahal Penting - Antara News.” Accessed: Nov. 29, 2023. [Online]. Available: Https://Www.Antaranews.Com/Berita/1114794/Banyak-Orang-Indonesia-Tak-Pernah-Cek-Darah-Padahal-Penting

A. Munjal And E. J. Kaufman, “Arcus Senilis,” Statpearls, Jul. 2023, Accessed: Jun. 11, 2024. [Online]. Available: Https://Www.Ncbi.Nlm.Nih.Gov/Books/Nbk554370/

M. Daniel, J. Raharjo, And K. Usman, “Iris-Based Image Processing For Cholesterol Level Detection Using Gray Level Co-Occurrence Matrix And Support Vector Machine,” Engineering Journal, Vol. 24, No. 5, Pp. 135–144, Sep. 2020, Doi: 10.4186/Ej.2020.24.5.135.

R. A. Ramlee, S. K. Subramaniam, S. B. Yaakob, A. S. F. Rahman, And N. M. Saad, “Corneal Arcus Classification For Hyperlipidemia Detection Using Gray Level Co-Occurrence Matrix Features,” In Journal Of Physics: Conference Series, Institute Of Physics Publishing, Jan. 2020. Doi: 10.1088/1742-6596/1432/1/012084.

A. Fadlil, W. S. Aji, And A. S. Nugroho, “Sistem Monitoring Kolesterol Melalui Iris Mata Dengan Metode Pengolahan Citra,” Jurnal Rekayasa Elektrika, Vol. 16, No. 1, May 2020, Doi: 10.17529/Jre.V16i1.15657.

R. A. D. Yulianto, I. Riadi, And R. Umar, “Perancangan Klasifikasi Pasien Stroke Dengan Metode K-Nearest Neighbor,” Rabit : Jurnal Teknologi Dan Sistem Informasi Univrab, Vol. 8, No. 2, Pp. 262–268, Sep. 2023, Doi: 10.36341/Rabit.V8i2.3454.

C. Castaneda Et Al., “Clinical Decision Support Systems For Improving Diagnostic Accuracy And Achieving Precision Medicine,” J Clin Bioinforma, Vol. 5, No. 1, Dec. 2015, Doi: 10.1186/S13336-015-0019-3.

R. A. Ramlee, K. A. Aziz, S. Ranjit, And M. Esro, “Automated Detecting Arcus Senilis, Symptom For Cholesterol Presence Using Iris Recognition Algorithm,” Journal Of Telecommunication, Electronic And Computer Engineering (Jtec), Vol. 3, No. 2, Pp. 29–39, 2011.

S. Arum Nurhusni And R. Ibnu Adam, “Klasifikasi Kadar Kolesterol Menggunakan Ekstraksi Ciri Moment Invariant Dan Algoritma K-Nearest Neighbor (Knn),” 2021. [Online]. Available: Http://Jurnal.Polibatam.Ac.Id/Index.Php/Jaic

L. B. Rachman And Basari, “Detection Of Cholesterol Levels By Analyzing Iris Patterns Using Backpropagation Neural Network,” In Iop Conference Series: Materials Science And Engineering, Institute Of Physics Publishing, Jul. 2020. Doi: 10.1088/1757-899x/852/1/012157.

I. F. Alam, M. Ihsan Sarita, And A. M. Sajiah, “Terakreditasi ‘Peringkat 4 (Sinta 4)’ Oleh Kemenristekdikti Implementasi Deep Learning Dengan Metode Convolutional Neural Network Untuk Identifikasi Objek Secara Real Time Berbasis Android,” Vol. 5, No. 2, Pp. 237–244, Doi: 10.5281/Zenodo.3459374.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, And L. C. Chen, “Mobilenetv2: Inverted Residuals And Linear Bottlenecks,” Proceedings Of The Ieee Computer Society Conference On Computer Vision And Pattern Recognition, Pp. 4510–4520, Jan. 2018, Doi: 10.1109/Cvpr.2018.00474.

T. Kocejko, J. Ruminski, M. Mazur-Milecka, M. Romanowska-Kocejko, K. Chlebus, And K. H. Jo, “Using Convolutional Neural Networks For Corneal Arcus Detection Towards Familial Hypercholesterolemia Screening,” Journal Of King Saud University - Computer And Information Sciences, Vol. 34, No. 9, Pp. 7225–7235, Oct. 2022, Doi: 10.1016/J.Jksuci.2021.09.001.

A. G. Howard Et Al., “Mobilenets: Efficient Convolutional Neural Networks For Mobile Vision Applications,” Apr. 2017, [Online]. Available: Http://Arxiv.Org/Abs/1704.04861

Y. Kaya And E. Gürsoy, “A Mobilenet-Based Cnn Model With A Novel Fine-Tuning Mechanism For Covid-19 Infection Detection,” Soft Comput, Vol. 27, No. 9, Pp. 5521–5535, May 2023, Doi: 10.1007/S00500-022-07798-Y.

T. Iman Hermanto, Y. Muhyidin, T. Informatika, And S. Wastukancana Purwakarta, “Analisis Data Sebaran Bandwidth Menggunakan Algoritma Dbscan Untuk Menentukan Tingkat Kebutuhan Bandwidth Di Kabupaten Purwakarta,” Rabit : Jurnal Teknologi Dan Sistem Informasi Univrab, Vol. 5, No. 2, Pp. 130–137, Jul. 2020, Doi: 10.36341/Rabit.V5i2.1388.

“Ubiris.V2 Dataset | Papers With Code.” Accessed: Jun. 11, 2024. [Online]. Available: Https://Paperswithcode.Com/Dataset/Ubiris-V2

D. Safitri Et Al., “Analisis Penggunaan Algoritma Klasifikasi Dalam Prediksi Kelulusan Menggunakan Orange Data Mining,” Rabit : Jurnal Teknologi Dan Sistem Informasi Univrab, Vol. 8, No. 1, Pp. 75–81, Jan. 2023, Doi: 10.36341/Rabit.V8i1.3009.

Published
2024-07-08
How to Cite
[1]
I. Lestari, J. Jumadi, and N. Lukman, “IMPLEMENTASI CONVOLUTIONAL NEURAL NETWORK DENGAN PRE-TRAINED MODEL MOBILENETV2 UNTUK DETEKSI KOLESTEROL”, rabit, vol. 9, no. 2, pp. 173-183, Jul. 2024.
Section
Articles
PDF (Bahasa Indonesia)
Abstract views: 247
downloads: 137