KLASIFIKASI HASIL MRI TUMOR OTAK DENGAN EKTRAKSI FITUR GRAY LEVEL CO-OCCURANCE MATRIX (GLCM)
Abstract
Bagian penting dari tubuh adalah otak yang mana menjadi sumber dari semua alat tubuh yang terletak dalam rongga tengkorak, tumor otak merupakan salah satu penyakit yang dapat menyerangnya. Pendeteksian tumor otak adalah salah satu aspek yang dinilai penting dalam diagnosa medis. Pada penelitian ini memiliki tujuan melakukan implementasi ekstraksi fitur GLCM (Gray Level Co-occurence Matrix) pada citra MRI tumor otak serta mencari performa algoritma yang paling baik dari deteksi tumor otak menggunakan citra MRI ini. Data yang dipakai pada penelitian ini merupakan data public yang berasal dari kaggle.com. Proses ekstraksi fitur pada citra digunakan pada penelitian ini GLCM yang mana memiliki fungsi menghitung frekuensi dari nilai intensitas piksel yang berjarak antar citra dengan menggunakan parameter 0o, 45o, 90o, 135o. Tahap selanjutnya pada penelitian ini adalah dengan melakukan langkah preprocessing dengan selanjutnya mencari nilai klasifikasi dari hasil MRI menggunakan algoritma Naïve Bayes, C4.5 dan Neural Network. Hasil yang didapatkan memperlihatkan bahwa Naïve Bayes memiliki performa algoritma paling baik dibandingkan C4.5 dan Neural Network yaitu dengan akurasi algoritma Naïve Bayes sebesar 96.8%, sedangkan untuk algoritma C4.5 sebesar 41.5% dan Neural Network sebesar 38.25%. selain hal tersebut pada penelitian ini membuktikan bahwa dengan ekstraksi fitur GLCM terbukti efektif dalam menangkap informasi tekstur dari citra MRI yang sangat penting pada klasifikasi tumor otak.
References
J. Sofian and R. H. Laluma, "Klasifikasi Hasil Citra MRI Otak untuk Memprediksi Jenis Tumor Otak dengan Metode Image Threshold dan GLCM menggunakan Algoritma K-NN (Nearest Neighbor) Classifier Berbasis Web," Jurnal Infotronik, p. 2, 2019.
A. S. B. Karno, W. Hastomo, D. Arif, I. S. K. Wardhana, N. Kamilia, R. Yulianto, A. Digdoyo and T. Surawan, "Brain Tumor Classification Using Four Versions of EfficientNet," Information System Research Journal, vol. 3, p. 1, 2023.
Akshaya TA M, P. Sreeja, Ms. J. Jayashankari, A. Mohamed, S. Iroda and V. Vijayan, "Identification Of Brain Tumor On MRI Image With and Without Segmentation Using DL Techniques," E3S Web of Conferences, ICONNECT 2023, 2023.
M. Martucci, R. Russo, F. Schimperna, G. D'Apolito, M. Panfili, A. Grimaldi, A. Perna, A. M. Ferranti, G. Varcasia, C. Giordano and S. Gaudino, "Magnetic Resonance Imaging of Primary Adult Brain Tumors: State of the Art and Future Perspectives," Journal Biomedicines, vol. 11, p. 364, 2023.
R. Sharma and P. Abrol, "Image Feature Extraction Techniques," International Journal of Scientific and Technical Advancements, vol. 6, pp. 125-128, 2020.
F. K. Fikriah, M. B. Sulthan, N. Mujahidah and M. K. Roziqin, "Naïve Bayesuntuk Klasifikasi Penyakit Daun Bawang Merah Berdasarkan Ekstraksi Fitur Gray Level Co-occurrence Matrix(GLCM)," Jurnal Komtika (Komputasi dan Informatika), vol. 6, p. 6, 2022.
K. Adi, C. A. Widodo, A. P. Widodo, R. Gernowo, A. Pamungkas and R. A. Syifa, "Detection Lung Cancer Using Gray Level Co-Occurrence Matrix (GLCM) and Back Propagation Neural Network Classification," Journal of Engineering Science and Technology Review, vol. 2, pp. 8-12, 2018.
M. N. M. Hakim, A. B. Nugroho and A. E. Minarno, "Prediksi Tumor Otak Menggunakan Metode Convolution Neural Network," Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer, vol. 17, pp. 48-51, 2022.
A. Rachmad, R. K. Hapsari,, W. Setiawan, T. Indriyani, E. M. S. Rochman and B. D. Satoto, "Classification of Tobacco Leaf Quality Using Feature Extraction of Gray Level Co-occurrence Matrix (GLCM) and K-Nearest Neighbor (K-NN)," Proceedings Of The 1st International Conference on Neural Netword and Machine Learning 2022 (ICONNSMAL 2022), pp. 30-38, 2023.
F. K. Fikriah, "Instance Selection dengan Naïve Bayes pada Klasifikasi Kanker Serviks," Jurnal Komtika (Komputasi dan Informatika), vol. 5, p. 2, 2021.
C. H. Pratomo and W. Andriyani, "Mushroom Image Classification Using C4.5 Algorithm," Journal of Intelligent Software System, vol. 2, pp. 17-19, 2023.
M. Sutrisno, J. K. Rambe, Asruddin and A. D. Wiranata, "The Implementation of The C4.5 Algorithm For Determining The Department of Vocational High School," Jurnal Riset Informatika, vol. 5, p. 2, 2023.
Y. Gerhana, I. Fallah, W. B. Zulfikar, D. S. Maylawati and M. A. Ramdhani, "Comparison of naive Bayes classifier and C4.5 algorithms in predicting student study period," Journal of Physics: Conference Series, vol. 1280, p. 2, 2019.
Y. Feriandi, D. S. Suhartini, B. Permana and C. Juliane, "Data Mining Using Neural Network for Research Topic Classification Based on Institutional Reseach Roadmap," Indonesian Journal of Multidiciplinary Science, vol. 2, p. 7, 2023.
X. Liu, "Art Painting Image Classification Based on Naural Network," Journal Computational Intelligence and Neuroscience, 2022.
Copyright (c) 2024 Rabit : Jurnal Teknologi dan Sistem Informasi Univrab
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice
The copyright of the received article shall be assigned to the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to published articles. Therefore, the author must submit a statement of the Copyright Transfer Agreement.*)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In line with the license, authors and any users (readers and other researchers) are allowed to share and adapt the material only for non-commercial purposes. In addition, the material must be given appropriate credit, provided with a link to the license, and indicated if changes were made. If authors remix, transform or build upon the material, authors must distribute their contributions under the same license as the original.
Please find the rights and licenses in RABIT : Jurnal Teknologi dan Sistem Informasi Univrab. By submitting the article/manuscript of the article, the author(s) accept this policy.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
2. Author’s Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
RABIT's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, RABIT permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and RABIT on distributing works in the journal.
4. Rights of Authors
Authors retain all their rights to the published works, such as (but not limited to) the following rights;
- Copyright and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in own future works, including lectures and books,
- The right to reproduce the article for own purposes,
- The right to self-archive the article,
- The right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal (RABIT : Jurnal Teknologi dan Sistem Informasi Univrab).
5. Co-Authorship
If the article was jointly prepared by other authors, any authors submitting the manuscript warrants that he/she has been authorized by all co-authors to be agreed on this copyright and license notice (agreement) on their behalf, and agrees to inform his/her co-authors of the terms of this policy. RABIT will not be held liable for anything that may arise due to the author(s) internal dispute. RABIT will only communicate with the corresponding author.
6. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by RABIT.
7. Miscellaneous
RABIT will publish the article (or have it published) in the journal if the article’s editorial process is successfully completed. RABIT's editors may modify the article to a style of punctuation, spelling, capitalization, referencing and usage that deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers as mentioned in point 3.