KLASIFIKASI HASIL MRI TUMOR OTAK DENGAN EKTRAKSI FITUR GRAY LEVEL CO-OCCURANCE MATRIX (GLCM)

Penulis

  • Fari Katul Fikriah Universitas Widya Husada Semarang
  • Amelia Devi Putri Ariyanto Universitas Widya Husada Semarang
  • Arif Fitra Setyawan

DOI:

https://doi.org/10.36341/rabit.v9i2.4793

Kata Kunci:

tumor otak, GLCM, Naïve Bayes, C4.5, Neural Network.

Abstrak

An important part of the body is the brain which is the source of all the body's organs in the skull cavity. Brain tumors are one of the diseases that can attack it. Detection of brain tumors is one aspect that is considered important in medical diagnosis. This research aims to implement GLCM (Gray Level Co-occurrence Matrix) feature extraction on MRI images of brain tumors and to find the best algorithm performance for detecting brain tumors using these MRI images. The data used in this research is public data originating from kaggle.com. The feature extraction process in pictures used in this research is GLCM, which has the function of calculating the frequency of pixel intensity values ​​that are spaced between images using parameters 0o, 45o, 90o, and 135o. The next stage in this research is to carry out preprocessing steps and then look for classification values ​​from the MRI results using the Naïve Bayes, C4.5, and Neural Network algorithms. The results obtained show that Naïve Bayes has the best algorithm performance compared to C4.5 and Neural Network, namely with an accuracy of the Naïve Bayes algorithm of 96.8%, while for the C4.5 algorithm it is 41.5% and the Neural Network is 38.25%. Apart from this, this study proves that GLCM feature extraction has proven effective in capturing texture information from MRI images which is very important in brain tumor classification.

Unduhan

Data unduhan belum tersedia.

Referensi

J. Sofian and R. H. Laluma, "Klasifikasi Hasil Citra MRI Otak untuk Memprediksi Jenis Tumor Otak dengan Metode Image Threshold dan GLCM menggunakan Algoritma K-NN (Nearest Neighbor) Classifier Berbasis Web," Jurnal Infotronik, p. 2, 2019.

A. S. B. Karno, W. Hastomo, D. Arif, I. S. K. Wardhana, N. Kamilia, R. Yulianto, A. Digdoyo and T. Surawan, "Brain Tumor Classification Using Four Versions of EfficientNet," Information System Research Journal, vol. 3, p. 1, 2023.

Akshaya TA M, P. Sreeja, Ms. J. Jayashankari, A. Mohamed, S. Iroda and V. Vijayan, "Identification Of Brain Tumor On MRI Image With and Without Segmentation Using DL Techniques," E3S Web of Conferences, ICONNECT 2023, 2023.

M. Martucci, R. Russo, F. Schimperna, G. D'Apolito, M. Panfili, A. Grimaldi, A. Perna, A. M. Ferranti, G. Varcasia, C. Giordano and S. Gaudino, "Magnetic Resonance Imaging of Primary Adult Brain Tumors: State of the Art and Future Perspectives," Journal Biomedicines, vol. 11, p. 364, 2023.

R. Sharma and P. Abrol, "Image Feature Extraction Techniques," International Journal of Scientific and Technical Advancements, vol. 6, pp. 125-128, 2020.

F. K. Fikriah, M. B. Sulthan, N. Mujahidah and M. K. Roziqin, "Naïve Bayesuntuk Klasifikasi Penyakit Daun Bawang Merah Berdasarkan Ekstraksi Fitur Gray Level Co-occurrence Matrix(GLCM)," Jurnal Komtika (Komputasi dan Informatika), vol. 6, p. 6, 2022.

K. Adi, C. A. Widodo, A. P. Widodo, R. Gernowo, A. Pamungkas and R. A. Syifa, "Detection Lung Cancer Using Gray Level Co-Occurrence Matrix (GLCM) and Back Propagation Neural Network Classification," Journal of Engineering Science and Technology Review, vol. 2, pp. 8-12, 2018.

M. N. M. Hakim, A. B. Nugroho and A. E. Minarno, "Prediksi Tumor Otak Menggunakan Metode Convolution Neural Network," Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer, vol. 17, pp. 48-51, 2022.

A. Rachmad, R. K. Hapsari,, W. Setiawan, T. Indriyani, E. M. S. Rochman and B. D. Satoto, "Classification of Tobacco Leaf Quality Using Feature Extraction of Gray Level Co-occurrence Matrix (GLCM) and K-Nearest Neighbor (K-NN)," Proceedings Of The 1st International Conference on Neural Netword and Machine Learning 2022 (ICONNSMAL 2022), pp. 30-38, 2023.

F. K. Fikriah, "Instance Selection dengan Naïve Bayes pada Klasifikasi Kanker Serviks," Jurnal Komtika (Komputasi dan Informatika), vol. 5, p. 2, 2021.

C. H. Pratomo and W. Andriyani, "Mushroom Image Classification Using C4.5 Algorithm," Journal of Intelligent Software System, vol. 2, pp. 17-19, 2023.

M. Sutrisno, J. K. Rambe, Asruddin and A. D. Wiranata, "The Implementation of The C4.5 Algorithm For Determining The Department of Vocational High School," Jurnal Riset Informatika, vol. 5, p. 2, 2023.

Y. Gerhana, I. Fallah, W. B. Zulfikar, D. S. Maylawati and M. A. Ramdhani, "Comparison of naive Bayes classifier and C4.5 algorithms in predicting student study period," Journal of Physics: Conference Series, vol. 1280, p. 2, 2019.

Y. Feriandi, D. S. Suhartini, B. Permana and C. Juliane, "Data Mining Using Neural Network for Research Topic Classification Based on Institutional Reseach Roadmap," Indonesian Journal of Multidiciplinary Science, vol. 2, p. 7, 2023.

X. Liu, "Art Painting Image Classification Based on Naural Network," Journal Computational Intelligence and Neuroscience, 2022.

##submission.downloads##

Diterbitkan

2024-07-11

Cara Mengutip

[1]
F. K. Fikriah, A. D. P. Ariyanto, dan A. F. Setyawan, “KLASIFIKASI HASIL MRI TUMOR OTAK DENGAN EKTRAKSI FITUR GRAY LEVEL CO-OCCURANCE MATRIX (GLCM)”, rabit, vol. 9, no. 2, hlm. 343–350, Jul 2024.

Terbitan

Bagian

Articles