DETEKSI KUALITAS RUMPUT LAUT MENGGUNAKAN METODE CONVELUTION NEURAL NETWORK (CNN) BERDASARKAN CITRA DIGITAL (STUDI KASUS : DESA ALASMALANG KECAMATAN RAAS SUMENEP)

Authors

  • Supandi Supandi Universitas Ibrahimy
  • Abd. Ghofur Universitas Ibrahimy
  • Firman Santoso Universitas Ibrahimy

DOI:

https://doi.org/10.36341/rabit.v10i2.6273

Keywords:

Quality Detection, Seaweed, Digital Image, CNN

Abstract

Seaweed quality greatly determines the economic value and competitiveness of processed marine products. To assist the automatic and objective quality classification process, a Convolutional Neural Network (CNN)-based approach is used with RGB color features from digital images as the main input. Seaweed images go through the stages of preprocessing, RGB color feature extraction, quality class labeling, and CNN model training. Two quality categories are defined, namely good and bad. The training results show that the CNN model is able to classify seaweed quality with an accuracy rate of 92% on training data and 91.19% on test data, as well as low and stable loss values. The application of CNN to color features has proven effective for image-based seaweed quality classification, and can be further developed in an automatic quality evaluation system in the agricultural and marine sectors.

Downloads

Download data is not yet available.

References

D. M. Syafitri, F. Fachri, and T. Informatika, “Analisis forensik digital telegram pada android untuk,” RABIT : Jurnal Teknologi dan Sistem Informasi Univrab, vol. 10, no. 1, pp. 41–50, 2025.

W. Yulianti and Salmidi, “Metode Rough Set Untuk Menganalisa Problematika Guru,” RABIT (Jurnal Teknologi dan Sistem Informasi UNIVRAB), vol. 1, no. 1, pp. 19–24, 2016.

M. Muliyadi, “KAJIAN KUALITAS AIR TERHADAP PERTUMBUHAN RUMPUT LAUT Eucheuma cottonii; STUDI KASUS DI DESA TAPI-TAPI KEC. MAROBO SULAWESI TENGGARA,” Jurnal Perikanan Unram, vol. 13, no. 3, pp. 682–689, 2024, doi: 10.29303/jp.v13i3.605.

F. Marpaung, F. Aulia, and R. C. Nabila, Computer Vision Dan Pengolahan Citra Digital. 2022. [Online]. Available: www.pustakaaksara.co.id

S. T. M. T. Dr. Ir. Silvester Tena and S. T. M. T. Wenefrida Tulit Ina, PENGOLAHAN CITRA DIGITAL. Penerbit CV. SARNU UNTUNG. [Online]. Available: https://books.google.co.id/books?id=EO0CEQAAQBAJ

D. A. M. Encoder-decoder, “Mesin penerjemah bahasa besemah berbasis machine learning dengan algoritma model encoder-decoder 1),” RABIT : Jurnal Teknologi dan Sistem Informasi Univrab, vol. 10, no. 1, pp. 168–175, 2025.

N. H. Harani and M. Hasanah, Deteksi Objek dan Pengenalan Karakter Plat Nomor Kendaraan Indonesia Berbasis Python. Kreatif. [Online]. Available: https://books.google.co.id/books?id=saD6DwAAQBAJ

D. I. P. Mlonggo and K. Jepara, “PENGARUH KEDALAMAN TERHADAP PERTUMBUHAN RUMPUT LAUT ( Eucheuma cottonii ) YANG DIBUDIDAYAKAN DENGAN METODE LONGLINE,” vol. 8, no. 1, pp. 7–12, 2012.

W. Rizkaprilisa et al., “3 (2) Science, Technology and Management Journal PEMANFAATAN RUMPUT LAUT SEBAGAI PANGAN FUNGSIONAL: SYSTEMATIC REVIEW Info Artikel,” Science, Technology and Management Journal, vol. 3, no. 182, pp. 28–33, 2023, [Online]. Available: http://journal.unkartur.ac.id/index.php/stmj

T. Gori, A. Sunyoto, and H. Al Fatta, “Preprocessing Data dan Klasifikasi untuk Prediksi Kinerja Akademik Siswa,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 1, pp. 215–224, 2024, doi: 10.25126/jtiik.20241118074.

P. D. R. Maulidiana, A. V. Vitianingsih, S. Kacung, A. L. Maukar, and D. Hermansyah, “Comparative Analysis of SVM and NB Algorithms in Evaluating Public Sentiment on Supreme Court Rulings,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 13, no. 2, pp. 230–236, 2024, doi: 10.32736/sisfokom.v13i2.2116.

S. P. M. K. Dr. Ir. Nurul Hidayat and S. T. M. M. M. T. I. P. U. A. E. Prof. Dr. Ir. R. Rizal Isnanto, Pengolahan Citra Digital. Zahira Media Publisher. [Online]. Available: https://books.google.co.id/books?id=JqhOEQAAQBAJ

A. R. Pratama, M. Mustajib, and A. Nugroho, “Deteksi Citra Uang Kertas dengan Fitur RGB Menggunakan K-Nearest Neighbor,” Jurnal Eksplora Informatika, vol. 9, no. 2, pp. 163–172, 2020, doi: 10.30864/eksplora.v9i2.336.

A. Rosid1?, F. S. , Abd. Ghofur2, and 1, “Klasifikasi Penyakit Tanaman Kentang Berdasarkan Citra Daun dan Batang dengan Metode Convolutional Neural Network dan Gray Level Co- Occurrence Matrix,” vol. 8, no. 3, pp. 1354–1362, 2024.

I. W. E. R. S. E. K. Yani Parti Astuti, “5026-19274-1-Pb,” Jurnal Informatika, vol. 8, no. 3, pp. 1–6, 2023.

Published

2025-07-10

How to Cite

[1]
S. Supandi, Abd. Ghofur, and Firman Santoso, “DETEKSI KUALITAS RUMPUT LAUT MENGGUNAKAN METODE CONVELUTION NEURAL NETWORK (CNN) BERDASARKAN CITRA DIGITAL (STUDI KASUS : DESA ALASMALANG KECAMATAN RAAS SUMENEP)”, rabit, vol. 10, no. 2, pp. 604–614, Jul. 2025.

Issue

Section

Articles

Similar Articles

> >> 

You may also start an advanced similarity search for this article.