PERBANDINGAN CNN, RESNET50, DAN VISION TRANSFORMER UNTUK KLASIFIKASI KANKER PAYUDARA BERBASIS WEB

Authors

  • Stella Juventia Grace Universitas Muhammadiyah Surakarta
  • Dedi Gunawan Universitas Muhammadiyah Surakarta

DOI:

https://doi.org/10.36341/rabit.v10i2.6420

Keywords:

Breast Cancer, Deep Learning, CNN, ResNet50, Vision Transformer

Abstract

This research aims to compare three deep learning algorithm-based image processing models, namely CNN, ResNet50, and Vision Transformer (ViT), in classifying breast cancer based on mammography images. The CBIS-DDSM dataset from Kaggle was used and processed through pre-processing steps such as data cleaning, image resizing, normalization, augmentation, and data splitting into training and testing sets. The models were evaluated using a 5-Fold Cross Validation scheme to ensure performance stability. The results show that ResNet50 achieved the highest accuracy of 97%, followed by CNN at 92%, and Vision Transformer at 71%. All three models were implemented into a web application using Flask to support the automatic diagnosis process. These findings are expected to help develop a faster and more accurate breast cancer detection system for medical professionals.

Downloads

Download data is not yet available.

References

R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer statistics, 2022,” CA Cancer J Clin, vol. 72, no. 1, pp. 7–33, 2022, doi: 10.3322/caac.21708.

S. Z. Ramadan, “Journal of Healthcare Engineering - 2020 - Ramadan - Methods Used in Computer‐Aided Diagnosis for Breast Cancer Detection.pdf,” 2020.

Y. Jim, “applied sciences Deep-Learning-Based Computer-Aided Systems for Breast Cancer Imaging : A Critical Review,” no. Figure 1, 2020.

G. Ayana and S. W. Choe, “BUViTNet: Breast Ultrasound Detection via Vision Transformers,” Diagnostics, vol. 12, no. 11, pp. 1–14, 2022, doi: 10.3390/diagnostics12112654.

H. Imaduddin, F. Y. A’la, A. Fatmawati, and B. A. Hermansyah, “Comparison of transfer learning method for COVID-19 detection using convolution neural network,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 2, pp. 1091–1099, 2022, doi: 10.11591/eei.v11i2.3525.

I. Nurfiani, J. Jumadi, and M. Deden Firdaus, “Pemanfaatan Stft Dan Cnn Dalam Pengolahan Data Suara Untuk Mengklasifikasikan Suara Batuk,” Rabit : Jurnal Teknologi dan Sistem Informasi Univrab, vol. 9, no. 2, pp. 184–190, 2024, doi: 10.36341/rabit.v9i2.4729.

A. Hayat, “Breast Cancer Detection System from Thermal Images using SWIN Transformer,” Computology: Journal of Applied Computer Science and Intelligent Technologies, vol. 3, no. 1, pp. 1–11, 2023, doi: 10.17492/computology.v3i1.2301.

İ. PACAL, “Deep Learning Approaches for Classification of Breast Cancer in Ultrasound (US) Images,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 12, no. 4, pp. 1917–1927, 2022, doi: 10.21597/jist.1183679.

A. Jaamour, C. Myles, A. Patel, S. J. Chen, L. McMillan, and D. Harris-Birtill, “A divide and conquer approach to maximise deep learning mammography classification accuracies,” PLoS One, vol. 18, no. 5 May, pp. 1–24, 2023, doi: 10.1371/journal.pone.0280841.

M. M. Taye, “Theoretical Understanding of Convolutional Neural Network :,” computation Review, vol. 11, no. 3, p. 52, 2023.

T. Zheng, J. Li, H. Tian, and Q. Wu, “The Process Analysis Method of SAR Target Recognition in Pre-Trained CNN Models,” Sensors, vol. 23, no. 14, 2023, doi: 10.3390/s23146461.

Y. Gao, M. Zhou, D. Liu, Z. Yan, S. Zhang, and D. N. Metaxas, “A Data-scalable Transformer for Medical Image Segmentation: Architecture, Model Efficiency, and Benchmark,” 2022.

Awsaf49, “CBIS-DDSM Breast Cancer Image Dataset,” Kaggle. Accessed: Jul. 11, 2025. [Online]. Available: https://www.kaggle.com/datasets/awsaf49/cbis-ddsm-breast-cancer-image-dataset

W. Supriyanti and D. A. Anggoro, “Classification of Pandavas Figure in Shadow Puppet Images using Convolutional Neural Networks,” Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika, vol. 7, no. 1, pp. 18–24, 2021, doi: 10.23917/khif.v7i1.12484.

M. J. Kim, Y. Liu, S. H. Oh, H. W. Ahn, S. H. Kim, and G. Nelson, “Automatic cephalometric landmark identification system based on the multi-stage convolutional neural networks with cbct combination images,” Sensors (Switzerland), vol. 21, no. 2, pp. 1–16, 2021, doi: 10.3390/s21020505.

Z. Wang, “Comparison of models of deep convolutional neural networks,” Applied and Computational Engineering, vol. 16, no. 1, pp. 50–55, 2023, doi: 10.54254/2755-2721/16/20230857.

S. Hassantabar, M. Ahmadi, and A. Sharifi, “Diagnosis and detection of infected tissue of COVID-19 patients based on lung x-ray image using convolutional neural network approaches,” Chaos Solitons Fractals, vol. 140, p. 110170, 2020, doi: 10.1016/j.chaos.2020.110170.

E. Suherman, B. Rahman, D. Hindarto, and H. Santoso, “Implementation of ResNet-50 on End-to-End Object Detection (DETR) on Objects,” SinkrOn, vol. 8, no. 2, pp. 1085–1096, 2023, doi: 10.33395/sinkron.v8i2.12378.

N. T. R. Adiningrum, R. Rianti, and C. Priyanto, “Rancang Bangun Aplikasi Prediksi Kanker Payudara Dengan Pendekatan Machine Learning,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 3s1, 2023, doi: 10.23960/jitet.v11i3s1.3351.

N. K. P. Marthasari, P. A. Ariana, A. A. Pratama, K. Y. Aryawan, and M. Heri, “SADARI: Upaya Mencegah Kanker Payudara Pada Usia Remaja,” Jurnal Abdi Masyarakat, vol. 2, no. 2, pp. 79–83, 2022, doi: 10.22334/jam.v2i2.26.

J. Maurício, I. Domingues, and J. Bernardino, “Comparing Vision Transformers and Convolutional Neural Networks for Image Classification: A Literature Review,” Applied Sciences (Switzerland), vol. 13, no. 9, 2023, doi: 10.3390/app13095521.

R. Uthama, B. Hendrik, M. T. Informatika, F. I. Komputer, U. P. Indonesia, and U. M. Riau, “Jurnal Computer Science and Information Technology ( CoSciTech ) Vision Transformer untuk Identifikasi 15 Variasi Citra Ikan Koi Vision Transformer for 15 Variatio,” Jurnal Computer Science and Information Technology (CoSciTech), vol. 5, no. 1, pp. 159–168, 2024.

L. Watef and F. Mahananto, “Deteksi dan Visualisasi Berbasis Computer Vision untuk Analisis Gambar Dermatologis dalam Penilaian Keparahan Jerawat,” ILKOMNIKA: Journal of Computer Science and Applied Informatics, vol. 6, no. 1, pp. 45–53, 2024, doi: 10.28926/ilkomnika.v6i1.603.

Y. Young, A. Alharthy, and A. S. Hosler, “Transformation of Saudi Arabia’s Health System and Its Impact on Population Health: What Can the USA Learn?,” Saudi Journal of Health Systems Research, vol. 1, no. 3, pp. 93–102, 2021, doi: 10.1159/000517488.

S. Iqbal, A. N. Qureshi, A. Ullah, J. Li, and T. Mahmood, “Improving the Robustness and Quality of Biomedical CNN Models through Adaptive Hyperparameter Tuning,” Applied Sciences (Switzerland), vol. 12, no. 22, 2022, doi: 10.3390/app122211870.

Published

2025-07-17

How to Cite

[1]
S. J. Grace and D. Gunawan, “PERBANDINGAN CNN, RESNET50, DAN VISION TRANSFORMER UNTUK KLASIFIKASI KANKER PAYUDARA BERBASIS WEB”, rabit, vol. 10, no. 2, pp. 945–956, Jul. 2025.

Issue

Section

Articles

Similar Articles

> >> 

You may also start an advanced similarity search for this article.