ANALISIS SENTIMEN TERHADAP GAME GENSHIN IMPACT MENGGUNAKAN BERT

Penulis

  • Ryo Kusnadi Universitas Internasional Batam
  • Yusuf Yusuf Universitas Internasional Batam
  • Andriantony Andriantony Universitas Internasional Batam
  • Richard Ardian Yaputra Universitas Internasional Batam
  • Melna Caintan Universitas Internasional Batam

DOI:

https://doi.org/10.36341/rabit.v6i2.1765

Kata Kunci:

Analisis Sentimen, Klasifikasi, BERT, Ilmu Data

Abstrak

Dengan pesatnya peningkatan jasa internet di jaringan sosial, ada banyaknya informasi dalam jumlah besar terus-menerus dihasilkan secara langsung di saat yang sama. Akhir-akhir ini, analisis sentimen dengan menggunakan ulasan dan pesan telah menjadi topik penelitian yang populer dibicarakan di bidang Natural Langauage Processing. Selama bertahun-tahun, permainan online telah menjadi suatu aktivitas yang tidak bisa dipisahkan dari Sebagian besar orang, terlebih karena gangguan ekonomi yang disebabkan oleh virus Covid-19. Genshin Impact adalah salah satu permainan terkenal yang dikembangkan oleh miHoYo. Penelitian ini berfokus pada analisis sentimen dengan tujuan mengetahui apakah ulasan terpercaya yang dikumpulkan dari Google Play Store memiliki sentimen netral, baik atau sentimen buruk sehingga dapat membantu pengembangan permainan kedepannya. Diperlukan proses klasifikasi analisis sentimen otomatis untuk mengurangi kesalahan yang disebabkan oleh sumber daya manusia. Meskipun demikian, sangat jarang ditemukan studi yang membahas feature extraction dan deep learning models  yang sesuai dengan kasus ini, terutama dalam bisnis permainan. Tahap proses penelitian ini adalah pengekstraksian data melalui Google Play Store, dan menggunakan Bidirectional Encoder Representations from Transformers (BERT) sebagai model kecerdasan buatan.

Unduhan

Data unduhan belum tersedia.

Referensi

D. L. King, P. H. Delfabbro, J. Billieux, and M. N. Potenza, “Problematic Online Gaming and The COVID-19 Pandemic,†J. Behav. Addict., vol. 9, no. 2, 2020.

S. Chakraborty, I. Mobin, A. Roy, and M. H. Khan, “Rating Generation of Video Games using Sentiment Analysis and Contextual Polarity from Microblog,†Proc. Int. Conf. Comput. Tech. Electron. Mech. Syst. CTEMS 2018, pp. 157–161, 2018, doi: 10.1109/CTEMS.2018.8769149.

L. Yang, Y. Li, J. Wang, and R. S. Sherratt, “Sentiment Analysis for E-Commerce Product Reviews in Chinese Based on Sentiment Lexicon and Deep Learning,†IEEE Access, vol. 8, pp. 23522–23530, 2020, doi: 10.1109/ACCESS.2020.2969854.

Y. Wang, K. T. Kim, B. J. Lee, and H. Y. Youn, “Word clustering based on POS feature for efficient twitter sentiment analysis,†Human-centric Comput. Inf. Sci., vol. 8, no. 1, 2018, doi: 10.1186/s13673-018-0140-y.

D. Blazquez and J. Domenech, “Big Data sources and methods for social and economic analyses,†Technol. Forecast. Soc. Change, vol. 130, no. March, pp. 99–113, 2018, doi: 10.1016/j.techfore.2017.07.027.

S. Pradha, M. N. Halgamuge, and N. Tran Quoc Vinh, “Effective text data preprocessing technique for sentiment analysis in social media data,†Proc. 2019 11th Int. Conf. Knowl. Syst. Eng. KSE 2019, pp. 1–8, 2019, doi: 10.1109/KSE.2019.8919368.

K. Fithriasari, I. Hariastuti, and K. S. Wening, “Handling Imbalance Data in Classification Model with Nominal Predictors,†Int. J. Comput. Sci. Appl. Math., vol. 6, no. 1, p. 33, 2020, doi: 10.12962/j24775401.v6i1.6643.

Z. Jianqiang and G. Xiaolin, “Comparison research on text pre-processing methods on twitter sentiment analysis,†IEEE Access, vol. 5, no. c, pp. 2870–2879, 2017, doi: 10.1109/ACCESS.2017.2672677.

S. Wahyu Handani, D. Intan Surya Saputra, Hasirun, R. Mega Arino, and G. Fiza Asyrofi Ramadhan, “Sentiment analysis for go-jek on google play store,†J. Phys. Conf. Ser., vol. 1196, no. 1, 2019, doi: 10.1088/1742-6596/1196/1/012032.

J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,†NAACL HLT 2019 - 2019 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. - Proc. Conf., vol. 1, no. Mlm, pp. 4171–4186, 2019.

J. Howard and S. Ruder, “Universal language model fine-tuning for text classification,†ACL 2018 - 56th Annu. Meet. Assoc. Comput. Linguist. Proc. Conf. (Long Pap., vol. 1, pp. 328–339, 2018, doi: 10.18653/v1/p18-1031.

M. E. Peters et al., “Deep contextualized word representations,†NAACL HLT 2018 - 2018 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. - Proc. Conf., vol. 1, pp. 2227–2237, 2018, doi: 10.18653/v1/n18-1202.

Z. Gao, A. Feng, X. Song, and X. Wu, “Target-dependent sentiment classification with BERT,†IEEE Access, vol. 7, pp. 154290–154299, 2019, doi: 10.1109/ACCESS.2019.2946594.

D. Kondratyuk and M. Straka, “75 Languages, 1 Model: Parsing Universal Dependencies Universally,†arXiv, pp. 2779–2795, 2019.

E. S. Palupi and S. M. Pahlevi, “Klasifikasi Opportunity Menggunakan Algoritma C4.5, C4.5 dan Naive Bayes Berbasis Particle Swarm Optimization,†Inti Nusa Mandiri, vol. 14, no. 2, pp. 133–138, 2020.

Ainurrohmah, “Akurasi Algoritma Klasifikasi pada Software Rapidminer dan Weka,†vol. 4, pp. 493–499, 2021.

E. Sutoyo and M. A. Fadlurrahman, “Penerapan SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Television Advertisement Performance Rating Menggunakan Artificial Neural Network,†JEPIN (Jurnal Edukasi dan Penelit. Inform., vol. 6, no. 3, pp. 379–385, 2020.

Y. Guan, J. Leng, C. Li, Q. Chen, and M. Guo, “How Far Does BERT Look At: Distance-based Clustering and Analysis of BERT’s Attention,†pp. 3853–3860, 2021, doi: 10.18653/v1/2020.coling-main.342.

R. A. Pangestu, B. Rahmat, and F. T. Anggraeny, “Implementasi Algoritma CNN untuk Klasifikasi Citra Lahan dan Perhitungan Luas,†Inform. dan Sist. Inf., vol. 1, no. 1, pp. 166–174, 2020.

X. Li, S. Chen, Y. Xia, and J. Yang, “Understanding the disharmony between weight normalization family and weight decay: ε−shifted L2 regularizer,†arXiv, vol. 1, 2019.

##submission.downloads##

Diterbitkan

2021-07-08

Cara Mengutip

[1]
R. Kusnadi, Y. Yusuf, A. Andriantony, R. Ardian Yaputra, dan M. Caintan, “ANALISIS SENTIMEN TERHADAP GAME GENSHIN IMPACT MENGGUNAKAN BERT”, rabit, vol. 6, no. 2, hlm. 122–129, Jul 2021.

Terbitan

Bagian

Articles