PENERAPAN SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN PADA TANGGAPAN MASYARAKAT DI MEDIA SOSIAL TERHADAP PROGRAM MAKAN SIANG GRATIS

APPLICATION OF SUPPORT VECTOR MACHINE FOR SENTIMENT ANALYSIS ON PUBLIC RESPONSE TOWARDS FREE LUNCH PROGRAM

Authors

  • Mutiara Sintia Dewi State Islamic University of North Sumatra
  • Abdul Halim Hasugian State Islamic University of North Sumatra

DOI:

https://doi.org/10.36341/rabit.v10i2.6425

Keywords:

sentiment analysis, Support Vector Machine, free lunch program, social media, TF-IDF

Abstract

The Free Nutritious Lunch Program initiated by the government has become a public spotlight, as it is considered a strategic effort to address the issues of malnutrition and stunting in Indonesia. This study aims to analyze public sentiment toward the program using a technology-based approach. The method used is the Support Vector Machine (SVM) algorithm with the Term Frequency-Inverse Document Frequency (TF-IDF) approach to classify public opinions on social media. This study utilized 1,000 tweets collected from the Twitter platform and processed using Google Colaboratory. SVM was chosen because it can handle high-dimensional data and has proven effective for text classification in various previous studies. The analysis results show that the majority of public sentiment is positive. The SVM model achieved an accuracy of 67%, with a precision of 98%, recall of 99%, and F1-score of 98%, demonstrating its effectiveness in classifying textual data. These findings indicate that sentiment analysis using machine learning approaches can serve as an important tool in evaluating public perception of government policies.

Downloads

Download data is not yet available.

References

N. Azzahra, A. D. Dharmawan, A. F. Mardatilah, and M. I. Habibi, “Pelaksanaan Uji Coba Program Makan Bergizi Gratis di SMP Negeri 4 Tangerang,” vol. 3, no. 4, pp. 5036–5044, 2025.

E. Yuspita and R. R. Suryono, “Perbandingan Berbagai Metode Klasifikasi Teks Untuk Sentimen Kebijakan Makan Gratis Di Indonesia,” Indones. J. Comput. Sci., vol. 13, no. 5, pp. 8447–8457, 2024, doi: 10.33022/ijcs.v13i5.4440.

P. M. Jakak and M. Rahman, “Analisis Sentimen Publik Terhadap Program Makan Bergizi Gratis di Instagram Menggunakan Algoritma Support Vector Machine,” vol. 11, no. 1, pp. 14–20, 2025.

A. Agustin, S. Andrean, S. Susanti, R. Rahmiati, and H. Hamdani, “Review Aplikasi Kredivo Menggunakan Analisis Sentimen Dengan Algoritma Support Vector Machine,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 9, no. 1, pp. 39–49, 2023, doi: 10.36341/rabit.v9i1.4107.

D. I. Sumantiawan, J. E. Suseno, and W. A. Syafei, “Sentiment Analysis of Customer Reviews Using Support Vector Machine and Smote-Tomek Links For Identify Customer Satisfaction,” J. Sist. Info. Bisnis, vol. 13, no. 1, pp. 1–9, 2023, doi: 10.21456/vol13iss1pp1-9.

J. A. P. Ginting, R. Maya Sari, M. Rafli Dewantara Siregar, and D. Kiswanto, “Analisis Support Vector Machine (Svm) Untuk Klasifikasi Jenis Kelamin Pada Ikan Cupang Dengan Bantuan Local Binary Pattern (Lbp),” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 6, pp. 12782–12786, 2024, doi: 10.36040/jati.v8i6.12028.

B. Sunarko et al., “Penerapan Stacking Ensemble Learning untuk Klasifikasi Efek Kesehatan Akibat Pencemaran Udara,” Edu Komputika J., vol. 10, no. 1, pp. 55–63, 2023, doi: 10.15294/edukomputika.v10i1.72080.

A. H. Hasugian, M. Fakhriza, and D. Zukhoiriyah, “Analisis Sentimen Pada Review Pengguna E-Commerce Menggunakan Algoritma Naïve Bayes,” J-SISKO TECH (Jurnal Teknol. Sist. Inf. dan Sist. Komput. TGD), vol. 6, no. 1, p. 98, 2023, doi: 10.53513/jsk.v6i1.7400.

A. Widianti and I. Pratama, “Penanganan Missing Values Dan Prediksi Data Timbunan Sampah Berbasis Machine Learning,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 9, no. 2, pp. 242–251, 2024, doi: 10.36341/rabit.v9i2.4789.

I. F. A. Mubarok, B. Huda, A. Hananto, T. Tukino, and H. Kabir, “Analisis User Sentiment Aplikasi Google Maps, Maps.Me Dan Waze Menggunakan Metode Support Vector Machine,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 8, no. 1, pp. 69–74, 2023, doi: 10.36341/rabit.v8i1.3020.

H. Eldo, Ayuliana, and Dikky Suryadi, “Penggunaan Algoritma Support Vector Machine ( SVM ) Untuk Deteksi Penipuan pada Transaksi Online,” vol. 13, pp. 1627–1632, 2024.

Z. Mutmainah, P. N. Az-Zahra, N. R. Tangke, M. Hasanah, M. A. Idris, and M. N. Aidi, “Pemodelan Geographically Weighted Regression (GWR) pada Prevalensi Severely Stunting di Indonesia Tahun 2023,” JOMTA J. Math. Theory Appl., vol. 07, no. 01, pp. 34–46, 2025, doi: 10.31605/jomta.v7i1.4873.

I. Amelia, Sugiyono, F. M. Sarimole, and Tundo, “Analisis Sentimen Tanggapan Pengguna Media Sosial X Terhadap Program Beasiswa KIP-Kuliah dengan Menggunakan Algoritma Support Vector Machine (SVM),” J. Indones. Manaj. Inform. dan Komun., vol. 5, no. 3, pp. 2994–3003, 2024, doi: 10.35870/jimik.v5i3.990.

H. Syah and A. Witanti, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (Svm),” J. Sist. Inf. dan Inform., vol. 5, no. 1, pp. 59–67, 2022, doi: 10.47080/simika.v5i1.1411.

Z. Alhaq, A. Mustopa, S. Mulyatun, and J. D. Santoso, “Optimasi Algoritma Support Vector Machine untuk Analisis Sentimen pada Ulasan Produk Tokopedia Menggunakan PSO,” Media Inform., vol. 20, no. 2, pp. 97–108, 2021, doi: 10.37595/mediainfo.v20i2.59.

Published

2025-07-11

How to Cite

[1]
Mutiara Sintia Dewi and A. H. Hasugian, “PENERAPAN SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN PADA TANGGAPAN MASYARAKAT DI MEDIA SOSIAL TERHADAP PROGRAM MAKAN SIANG GRATIS : APPLICATION OF SUPPORT VECTOR MACHINE FOR SENTIMENT ANALYSIS ON PUBLIC RESPONSE TOWARDS FREE LUNCH PROGRAM”, rabit, vol. 10, no. 2, pp. 911–922, Jul. 2025.

Issue

Section

Articles

Similar Articles

> >> 

You may also start an advanced similarity search for this article.